Ohio Supercomputer Center, 1224 Kinnear Rd, Columbus, OH 43221-1153
Typical Program Organization for SCF-KS equations
The single geometry SCF cycle or geometry optimization
involve following steps:
It is quite popular to limit expense of numerical integration during the SCF cycle. It is frequently done by fitting auxiliary functions to charge density and exchange correlation potential. This allows for much faster integral evaluation. These auxiliary fitting functions are usually uncontracted gaussians (though quite different from the atomic basis sets) for which the integrals required for KS matrix can be calculated analytically. Different auxilliary sets are used for fitting charge density and exchange-correlation potential (see e.g., Dunlap & Rösch, 1990). The need for fitting is recently questioned (see e.g., Johnson, 1995) since it scales as even for very large systems, however, it is still very popular in DFT codes. The fitting procedures are in general non sparse, while for large molecules many contributions coming from distant portions may be neglected leading to less steep scaling with molecular size.
Early DFT codes were impaired by the lack of analytical gradients. Currently, expressions for first and second derivatives exist (see e.g.: Dunlap & Andzelm, Komornicki & Fitzgerald, 1993) and are implemented in many programs, thus facilitating geometry optimization and vibrational frequency calculations.