CCL Home Page
Up Directory CCL psi1eht.f
C       ***********************************************************
C       ********************  PSI/77 - PART 1  ********************
C       ***********************************************************
C
C       WILLIAM L. JORGENSEN
C       PURDUE UNIVERSITY, DEPARTMENT OF CHEMISTRY
C       WEST LAFAYETTE, INDIANA 47907, USA
C       PHONE 317-494-8824
C
C        PROGRAM HAS BEEN MODIFIED TO PRODUCE D TYPE ORBITALS.
C        EIGENVECTORS FROM EHT CALCULATION ARE REQUIRED.
C        ORBITALS ARE IN THE ORDER OF D(Z**2,XZ,YZ,X**2-Y**2,XY)
C
C        J. GAO, JAN., 1986
C
      COMMON /RPLOT/ N,CO(3),CM,THE,GAM,PHI,X(850),Y(850),Z(850),IDASH,
     *   SCALE,PERZ,KA,KO,ZO
      COMMON /HLCOM/ NAC(850),NC,NCURV,NCDASH(850)
      COMMON /IO/ IRD,ILST,IDSK1,IDSK2,IDSK3
C
C       THIS PROGRAM ACCEPTS A WAVEFUNCTION AND DETERMINES
C       ELECTRON DENSITY OR ORBITAL VALUES IN THE PLANES
C       WHICH ARE SPECIFIED, THE EIGENVECTORS AND MOLECULAR
C       COORDINATES ARE READ FROM DISK FILE 21 OR MAY BE CARD INPUT.
C       CLOSED CONTOURS AT THE SPECIFIED LEVEL(S)
C       ARE DRAWN THROUGH THE DENSITY OR ORBITAL VALUE
C       ARRAYS AND THE POINTS(IN ANGSTROMS) FOR EACH CONTOUR ARE STORED
C       AS OUTPUT IN DISK FILE 22. THE TOTAL
C       NUMBER OF POINTS AND THE NUMBER OF CURVES ALONG
C       WITH THE NUMBER OF POINTS IN EACH CURVE AND AN
C       INDICATOR FOR WHETHER THE CONTOUR LEVEL IS POSITIVE
C       OR NEGATIVE ARE STORED IN THE OUTPUT DISK FILE
C       23. FOR PROPER HIDDEN LINE ELIMINATION
C       IN THE 3-D DRAWING PROGRAM, IT IS ESSENTIAL THAT ALL CONTOURS
C       WHICH ARE CONSTRUCTED BE CLOSED. IF THIS CONDITION IS NOT MET,
C       AN ERROR MESSAGE IS PRINTED.
C
C       CARD INPUT IS DESCRIBED IN SUBROUTINE THREED.
C
C       NOT ALL OF THE VARIABLES IN COMMON/RPLOT ARE
C       ESSENTIAL TO THIS PROGRAM, BUT HAVE BEEN RETAINED
C       FOR COMPATIBILITY WITH THE HIDDEN LINE PLOTTING
C       PROGRAM IN CASE THE TWO ARE MERGED
C
      IRD = 5
      ILST = 6
      IDSK1 = 22
      IDSK2 = 23
      IDSK3 = 21
      THE = 0.
      GAM = 0.
      PHI = 0.
      NC = 0
      NCURV = 0
C
C       MAKE 3-D CONTOUR MAP
C
      CALL THREED
C
C       AFTER THE CURVES HAVE BEEN CREATED THE POINT AND
C       CURVE TOTAL INFORMATION IS STORED IN THE FILE, POINT
C
      STOP
	END
      SUBROUTINE THREED
C
C       PROGRAM TO PLOT VALENCE SHELL
C       OR CHARGE DENSITIES IN 2 OR 3 DIMENSIONS FOR ATOMS H - AR
C       W.L. JORGENSEN   -   12/19/71, MAJOR REVISION 5/15/77
C
C       THIS VERSION ONLY WORKS FOR EHT AND EHT(N3D) TYPES
C       JOHN NASH - 4/28/90
C
      parameter (MXPTS=41)
      CHARACTER CALC*6,AUTO*4
      INTEGER WFTYP
      COMMON /RPLOT/ NNN,CO(3),CM,THE,GAM,PHI,XX,YY,ZZ,IDASH,SCALE,PERZ,
     *   KA,KO,ZZZ
      COMMON /HLCOM/ NAC(850),NC,NCURV,NCDASH(850)
      COMMON /IO/ IRD,ILST,IDSK1,IDSK2,IDSK3
      COMMON /DENS/ DENS(MXPTS,MXPTS,MXPTS),CONTR(100),RAD(100)
     * ,RNORM(100),V(100,100),C(50,3),IAN(49),RCUT(18),OCMO(100)
      COMMON /MINMAX/ XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX
      COMMON /SPLIT/ XMI,YMI,ZMI,XINC,YINC,ZINC,MONE,MOLAST
     *   ,NORB,NOCUT,NAT
      COMMON /EHT/ Z1S(18),Z2SP(18),Z3S(8),Z3P(8),Z3D(8)
      DIMENSION ZO(31),Z1(31),XX(850),YY(850),ZZ(850),CMIN(3),CMAX(3)
      DIMENSION CTR(15),SAV(MXPTS,MXPTS)
C
C       SLATER EXPONENTS ARE FROM HOFFMANN + SUMMERVILLE, JACS, 1976.
C
      DATA Z1S / 1.3,1.7,2.7,3.7,4.7,5.7,6.7,7.7,8.7,9.7,10.7,11.7,12.7,
     *   13.7,14.7,15.7,16.7,17.7 /
      DATA Z2SP / 0.0,0.0,0.65,0.975,1.3,1.625,1.95,2.275,2.425,2.925,
     *   3.425,3.925,4.425,4.925,5.425,5.925,6.425,6.925 /
      DATA Z3S / 0.733,0.95,1.167,1.383,1.75,2.122,2.183,2.25 /
      DATA Z3P / 0.733,0.95,1.167,1.383,1.30,1.827,1.733,2.25 /
      DATA Z3D / 0.0,0.0,0.0,1.383,1.40,1.50,2.033,0.0 /
      DATA RCUT / 5.8,4.7,13.2,9.5,7.5,6.2,5.4,4.7,4.5,3.8,14.0,11.3,9.5
     *   ,8.4,8.3,7.8,6.1,5.6 /
      DATA AU,PI,RT3 / 0.529167,3.1415926536,1.7320508 /
C
C       V IS THE EIGENVECTOR MATRIX. DENS IS THE CHARGE DENSITY OR
C       ORBITAL VALUE MATRIX. IAN IS THE ARRAY OF ATOMIC NUMBERS
C       FOR THE ATOMS  WHOSE COORDINATES, READ IN IN ANGSTROMS, ARE IN
C       C. CTR IS THE ARRAY OF CONTOUR LEVELS IN AU.
C
C       CARD INPUT IS AS FOLLOWS -
C       CARD  1 - TYPE OF WAVEFUNCTION = EHT, EHT3D.(1A6)
C                 EHT3D INCLUDES 3D ORBITALS ON SI, P, S, CL.
C                 CC 6-9 = AUTO FOR AUTOMATIC DETERMINATION OF PLOTTING
C                 PLANES AND LIMITS, ETC.  IF USED, NOW SKIP TO
C                 AFTER CARD 9. THE OTHER PARAMETERS ON THIS CARD ARE
C                 STILL ACTIVE.
C                 CC 11-15 IRDPOP = INCREMENT BETWEEN PLANES IN ANGSTROMS
C                 WHEN AUTO IS USED.
C                 CC 16 IONEMO = 1 IF ONE MO ONLY IS TO BE CARD INPUT.
C                 SEE BELOW FOR AO ORDER.
C                 CC 17 NOCUT = 1 IF A CUTOFF OF 0.0005 AU IS NOT TO BE
C                 USED IN EVALUATING AN AO. THIS SLOWS EXECUTION.
C       CARD 2 -  X,Y AND NO. OF FIRST SET OF PLANES (=1 FOR 2-D) - 2A1,
C          CC 5-6 = +1 OR -1 IF ORBITAL IS SYMMETRIC IN THE YZ PLANE
C          - +1 FOR SYMMETRIC, -1 FOR ANTISYMMETRIC (OPTIONAL).
C       CARD 3 - XMIN (=0 FOR AUTO SCALING) XMAX YMIN YMAX - 4F10.6
C       CARD 4 - ZMIN ZMAX - 2F10.6
C       CARD 5 - X',Y'AND NO. OF SECOND SET OF PLANES (=0 FOR 2-D) - 2A1
C          CC 5-6 = +1 OR -1 IF ORBITAL IS SYMMETRIC IN THE YZ PLANE
C          - +1 FOR SYMMETRIC, -1 FOR ANTISYMMETRIC (OPTIONAL).
C       CARD 6 - X'MIN X'MAX Y'MIN Y'MAX (OMIT FOR 2-D) - 4F10.6
C       CARD 7 - Z'MIN Z'MAX  (OMIT FOR 2-D) 2F10.6
C       CARD 8 - NO. OF CONTOURS, ICONN, ICONZ, NORB  -4I2
C         ICONN = 1 FOR NEGATIVE CONTOURS, TOO.
C         ICONZ=1 FOR ZERO CONTOUR AND NORB=2 FOR CHARGE DENSITY PLOT.
C       CARD 9 - CONTOUR LEVELS (ONLY POSITIVE NEED BE SPECIFIED WHEN
C         ICONN AND ICONZ ARE USED - 8F10.6).
C       ***IF IONEMO=1, THE GEOMETRY CARDS AND A 99 CARD FOLLOWED BY
C       THE ONE MO TO BE PLOTTED (8F10.6) ARE INSERTED HERE ***
C LAST  CARD   - FIRST MO TO BE  SUMMED, LAST MO, SCALE (FOR AUTO SCALE)
C         - 2I2, F10.6 - MONE=MOLAST=0 FOR ALL OCCUPIED MO'S.
C       FOR AN ORBITAL VALUE PLOT, MONE=MOLAST=THE NUMBER OF
C       THE DESIRED MO. IF IONEMO=1, MONE=MOLAST=01.
C
C-----------------------------------------------------------------------
C        WHEN TRANSITION ELEMENTS ARE INCLUDED IN YOUR MO PLOTS,
C        USE ATOMIC NUMBER RANGING FROM 19-53 FOR EACH ATOM. THE AO
C        COEFFICIENTS ARE TO BE READ IN FROM YOUR INFILE. FOR EACH
C        TS METAL, ONE ADDITIONAL CARD FOLLOWING THE XYZ COORDINATE
C        FOR THE TRANSITION METAL IS REQUIRED. THE FORMAT IS AS FOLLOW:
C           A2     ATOMIC SYMBOL
C           I3     NUMBER OF VALENCE ELECTRONS
C           I3     PRINCIPAL QUANTUM NUMBER OF S SHELL
C           F6.3   S SHELL EXPONENT
C           I3     PRINCIPAL QUANTUM NUMBER FOR THE P SHELL
C           F6.3   P SHELL EXPONENT
C           I3     PRINCIPAL QUANTUM NUMBER FOR THE D SHELL
C           F6.3   D SHELL EXPONENT 1
C           F6.4   COEFFICIENT FOR THE FIRST D EXPONENT
C           F6.3   D SHELL EXPONENT 2
C           F6.4   COEFFICIENT FOR THE SECOND D EXPONENT
C-----------------------------------------------------------------------
C
C       INITIALIZE FOR AUTOMATIC PROCESSING
C
      NCT = 1
      CTR(1) = 0.075
      NORB = 1
      ICONN = 1
      ICONZ = 0
      XMIN = 0.0
      X1MIN = 0.0
      NZ = 0
      NZ1 = 0
      ISYM = 0
      ISYM1 = 0
      ISAV = 0
      N3D = 0
      CTRFACT = 1.0
      READ (IRD,10) CALC,AUTO,IRDPOP,IONEMO,NOCUT
	WRITE(*,*)' CALC,ETC ',CALC,AUTO,IRDPOP,IONEMO,NOCUT
   10 FORMAT (1A6,1A4,1X,I1,4X,2I1)
      IF (CALC.EQ.'EHT3D ') N3D = 1
      IF (CALC.NE.'EHT   '.AND.CALC.NE.'EHT3D ') THEN
         WRITE (ILST,*) 'PSI1 IS NOT SET UP TO DO THE CALCULATIONS ON'
         WRITE (ILST,*) 'THIS BASIS SET. YOU CAN USE EHT AND EHT3D ONLY'
         STOP
      ENDIF
      IF (AUTO.NE.'AUTO') THEN
C
C       READ ABSCISSA AND ORDINATE MIN AND MAX - 0 = AUTO.
C
         READ (IRD,30) XMIN,XMAX
         READ (IRD,30) YMIN,YMAX
         READ (IRD,30) ZMIN,ZMAX
      ENDIF
   30 FORMAT (2F10.6)
C
C       OBTAIN PLOTTING DATA FROM DISK
C
      IRD1 = IDSK3
      IF (IONEMO.EQ.1) IRD1 = IRD
      READ (IRD1,200) ICHG
	WRITE(*,*)' CHARGE = ',ICHG
      NOEL = -ICHG
      N = 0
      NBASIS = 0
      NAT = 0
      NDCALS = 0
C
C       READ COORDINATES AND DETERMINE NORMALIZING FACTORS FOR AOS.
C       THE FORM OF THE SLATER ORBITALS MAY BE FOUND IN I.G. CSIZMADIA,
C       THEORY AND PRACTICE OF MO CALCULATIONS,ELSEVIER,1976, P 313.
C
   40 NAT = NAT+1
      READ (IRD1,50) IN,(C(NAT,J),J=1,3)
	WRITE(*,*)' ATOM ',IN,(C(NAT,J),J=1,3)
   50 FORMAT (I2,8X,3F10.6)
      IF (IN.NE.99) THEN
         IAN(NAT) = IN
         N3FLG = 0
         IF (IN.LE.2) THEN
            N = N+1
            NBASIS = NBASIS+2
            NOEL = NOEL+IN
            RNORM(N) = SQRT((Z1S(IN)**3)/PI)
            GO TO 40
         ENDIF
         IF (WFTYP.EQ.1) THEN
            NOEL = NOEL+2
            N = N+1
            RNORM(N) = SQRT((Z1S(IN)**3)/PI)
         ENDIF
         IF (IN.GE.11) THEN
            IF (WFTYP.EQ.0) GO TO 80
         ENDIF
         NOEL = NOEL+8
         IF (IN.LT.11) NOEL = NOEL-10+IN
         RN = SQRT((Z2SP(IN)**5)/PI)
         N = N+1
         RNORM(N) = RN/RT3
   60    DO 70 I = 1, 3
            N = N+1
            RNORM(N) = RN
   70    CONTINUE
         IF (N3FLG.EQ.1) GO TO 90
         IF (IN.LT.11) GO TO 40
   80    IF (IN.GT.18) GO TO 110
         IN = IN-10
         NOEL = NOEL+IN
         N = N+1
         RNORM(N) = SQRT(2.*(Z3S(IN)**7)/(45.*PI))
         RN = SQRT(2.*(Z3P(IN)**7)/(15.*PI))
         N3FLG = 1
         GO TO 60
   90    IF (IN.LT.4) GO TO 40
         IF (N3D.EQ.0) GO TO 40
         RN = SQRT(2.*(Z3D(IN)**7)/(3.*PI))
         DO 100 I = 1, 5
            N = N+1
            RNORM(N) = RN
  100    CONTINUE
         I = N-4
         RNORM(I) = RN*0.5/RT3
         I = N-1
         RNORM(I) = RN*0.5
         GO TO 40
  110    CALL DORBIT (IN,N,NOEL,NAT,IRD1)
         GO TO 40
      ENDIF
      NAT = NAT-1
      CALL DRAMNP (C,NAT,CO,ICM,CMIN,CMAX)
C
C       CONVERT COORDINATES TO ATOMIC UNITS
C
C     IT'S FASTER TO MULTIPLY THAN TO DIVIDE ON MOST COMPUTERS
C
      AUINV = 1.0/AU
      DO 130 I = 1, NAT
         DO 120 J = 1, 3
            C(I,J) = C(I,J)*AUINV
  120    CONTINUE
  130 CONTINUE
	WRITE(*,*)' ATOM ',IN,(C(NAT,J),J=1,3)
C
C       NAT=NO. OF ATOMS% NOEL=NO. OF ELECTRONS% N= NO.
C       OF BASIS FUNCTIONS.
C       NORB=1,2 FOR ORBITAL VALUES OR CHARGE DENSITIES
C
      NMO = (NOEL+1)/2
C
C       READ IN EIGENVECTORS
C       IT IS ASSUMED THAT THE EIGENVECTORS HAVE BEEN NORMALIZED TO 1
C       ELECTRON WITH THE OVERLAP MATRIX INCLUDED.
C
C       ALTHOUGH THIS DOES NOT APPEAR NECESSARY - JOHNN J. NASH 4/29/90
C
      WRITE (ILST,140) N,NAT,NOEL
  140 FORMAT (' NBASIS = ',I3,' NATOMS = ',I3,' NOEL = ',I3)
      IF (IONEMO.NE.0) THEN
         READ (IRD,150) (V(I,1),I=1,N)
	 WRITE(*,*)' EIGENVECTORS ',(V(I,1),I=1,N)
      ELSE
         READ (IDSK3,150) ((V(I,J),I=1,N),J=1,N)
  150    FORMAT (8f10.6)
      ENDIF
C
C       ESTABLISH MO OCCUPANCIES. THESE MAY ALSO BE READ
C       IN FOR OPEN SHELLS
C
C
C       READ IN MONE AND MOLAST
C
      READ (IRD,190) MONE,MOLAST,SCALE
	WRITE(*,*)' MONE,MOLAST,SCALE ',MONE,MOLAST,SCALE
  190 FORMAT (2I2,F10.6)
C
C       READ THE NO. OF CONTOURS AND THEN THE LEVELS.
C
      READ (IRD,200) NCT,ICONN,ICONZ,NORB
	WRITE(*,*)' NCT,ICONN,ICONZ,NORB ',NCT,ICONN,ICONZ,NORB
  200 FORMAT (4I2)
      READ (IRD,210) (CTR(I),I=1,NCT)
	WRITE(*,*)' CTR ',CTR(1)
  210 FORMAT (8F10.6)
C
C       DEFAULT VALUES
C
      IF (MONE.EQ.0) MONE = 1
      IF (MOLAST.EQ.0) MOLAST = NMO
      IF (IONEMO.EQ.1) MOLAST = 1
      IF (SCALE.EQ.0.0) SCALE = 1.0
      NUM = MOLAST-MONE+1
C
C       DEFAULT VALUES
C
      IF (NCT.EQ.0) CTR(1) = 0.075
      IF (NCT.EQ.0) NCT = 1
      IF (NORB.EQ.0) NORB = 1
      IF (NORB.EQ.1) ICONN = 1
      WRITE (ILST,20) CALC,IONEMO,NORB,IRDPOP
   20 FORMAT (' CALC = ',1A6,' IONEMO = ',I2,' NORB = ',I2,' IRDPOP=',
     *   I2)
C
C       NORMALIZE MO S TO PROPER OCCUPANCIES
C
C       THIS WILL NOW BE DONE AT THE END SO MO'S CAN BE SIMULTANEOUSLY
C       BE PLOTTED, IMPOSSIBLE IF IT'S DONE HERE
C
C            DO 180 I = 1, N
C               FACT = SQRT(OCMO(I))
C               DO 170 J = 1, N
C                  V(J,I) = FACT*V(J,I)
C  170          CONTINUE
C  180       CONTINUE
C         ENDIF
C       ENDIF
C
C       GREATER RESOLUTION IS OBTAINABLE BY INCREASING THE
C       SIZE OF MXPTS WHICH IS THE DIMENSIONS OF THE DENSITY
C       OR ORBITAL VALUE ARRAY. OF COURSE, THE DIMENSION
C       STATEMENTS WILL ALSO HAVE TO BE APPROPRIATELY FIXED.
C        MXPTS MUST BE ODD.
C
C      MXPTS = 51
C	see the parameter statement at top for this parameter
C
      SPACES = FLOAT(MXPTS-1)*AU
C
C       DETERMINE DEFAULT PLANES
C
C
C       DETERMINE DEFAULT RANGES, IF XMIN = 0. INCREASING SCALE
C       INCREASES THE RANGE OF THE PLOT.
C
	WRITE(*,*)' AUTO, SCALE ',AUTO,SCALE
      IF (AUTO.EQ.'AUTO') THEN
         R = 1.3*SCALE
         XMIN = CMIN(1)-R
         YMIN = CMIN(2)-R
         XMAX = CMAX(1)+R
         YMAX = CMAX(2)+R
         ZMIN = CMIN(3)-R
         ZMAX = CMAX(3)+R
      ENDIF
      XMI = XMIN/AU
      YMI = YMIN/AU
      ZMI = ZMIN/AU
      XINC = (XMAX-XMIN)/SPACES
      YINC = (YMAX-YMIN)/SPACES
      ZINC = (ZMAX-ZMIN)/SPACES
      WRITE (ILST,220) 'X',XMIN,XMAX,'Y',YMIN,YMAX,'Z',ZMIN,ZMAX
  220 FORMAT ('0',3(2X,A1,2F10.4))
C
C       SYMMETRY SET-UP
C
      ISFLAG = 0
C      MXXPTS = MXPTS
C
C       MAKE A MAP FOR EACH SLICE
C
      IF (CALC.EQ.'EHT   '.OR.CALC.EQ.'EHT3D ') THEN
         CALL EHTMO (N3D)
      ELSE
         WRITE (*,*) ' NO COMPUTATIONS DONE'
      ENDIF
      RETURN
      END
C
C
      SUBROUTINE DRAMNP (C,NAT,CO,ICM,CMIN,CMAX)
      DIMENSION C(50,3),CO(3),CMIN(3),CMAX(3)
C
C       THIS ROUTINE DETERMINES CO AND CM WHICH ARE USED
C       FOR AUTOMATIC SCALING OF PLOTTING AREAS
C
C       THE ROUTINE WAS ADAPTED FROM THE ROUTINE CALLED
C       DRAMOL WHICH IS USED IN THE HIDDEN LINE PART OF
C       THE PROGRAM
C
      CM = -100.
      DO 20 I = 1, 3
         CMI = 100.
         CMA = -100.
         DO 10 J = 1, NAT
            P = C(J,I)
            CMI = MIN(CMI,P)
            CMA = MAX(CMA,P)
   10    CONTINUE
         CO(I) = (CMA+CMI)/2.
         CMIN(I) = CMI
         CMAX(I) = CMA
         P = CMA-CMI
         IF (P.GT.CM) THEN
            ICM = I
            CM = P
         ENDIF
   20 CONTINUE
      RETURN
      END
C
C
      SUBROUTINE DORBIT (IN,N,NOEL,NAT,IRD)
      PARAMETER (MXPTS=41)
C
C        SETS UP D ORBITALS
C        J. GAO, JAN., 1986
C
C        COEFFECIENTS OF ORBITALS :
C         NS = SQRT( (2ZS)^(2N+1)/(4(2N)!*PI) )  * R^(N-1)EXP(-ZSR)
C
C         NP = SQRT( 3(2ZP)^(2N+1)/(4(2N)!*PI) ) * R^(N-2)EXP(-ZPR)X
C
C         ND = SQRT( 15(2ZD)^(2N+1)/(4(2N)!*PI) ) --- AND ADJUSTMENTS
C                                                     FOR EACH D'S
C
      COMMON /DENS/ DENS(MXPTS,MXPTS,MXPTS),CONTR(100),RAD(100)
     * ,RNORM(100),V(100,100),C(50,3),IAN(49),RCUT(18),OCMO(100)
      COMMON /DORB/ NSHELL(25),ZTS(25),ZTP(25),ZTD(25,2),DCONST(25,2),
     *   RRNORM(100)
      DIMENSION ZD(2),CD(2)
      DATA PI,RT3 / 3.1415926536,1.7320508 /
C
      READ (IRD,10) SYM,NVLE,NS,ZS,NP,ZP,ND,ZD(1),CD(1),ZD(2),CD(2)
   10 FORMAT (A2,I3,I3,F6.3,I3,F6.3,I3,F6.3,F6.4,F6.3,F6.4)
      NSHELL(NAT) = ND
      ZTS(NAT) = ZS
      ZTP(NAT) = ZP
      ZTD(NAT,1) = ZD(1)
      ZTD(NAT,2) = ZD(2)
      DCONST(NAT,1) = CD(1)
      DCONST(NAT,2) = CD(2)
      NOEL = NOEL+NVLE
      N = N+1
      IF (NS.LT.3.OR.NP.LT.3.OR.ND.LT.3) THEN
         WRITE (*,*) ' PROGRAM STOPPED IN SUBROUTINE DORBIT'
         STOP
      ENDIF
      GO TO (20,20,20,30,40,50), NS
   20 RNORM(N) = SQRT(2.*ZS**7/(45.*PI))
      GO TO 60
   30 RNORM(N) = SQRT(ZS**9/(315.*PI))
      GO TO 60
   40 RNORM(N) = SQRT(2.*ZS**11/(14175.*PI))
      GO TO 60
   50 RNORM(N) = SQRT(2.*ZS**13/(467775.*PI))
   60 GO TO (70,70,70,90,110,130), NP
   70 RN = SQRT(2.*ZP**7/(15.*PI))
      DO 80 I = 1, 3
         N = N+1
         RNORM(N) = RN
   80 CONTINUE
      GO TO 150
   90 RN = SQRT(ZP**9/(105.*PI))
      DO 100 I = 1, 3
         N = N+1
         RNORM(N) = RN
  100 CONTINUE
      GO TO 150
  110 RN = SQRT(2.*ZP**11/(4725.*PI))
      DO 120 I = 1, 3
         N = N+1
         RNORM(N) = RN
  120 CONTINUE
      GO TO 150
  130 RN = SQRT(2.*ZP**13/(155925.*PI))
      DO 140 I = 1, 3
         N = N+1
         RNORM(N) = RN
  140 CONTINUE
  150 GO TO (160,160,160,180,200), ND
  160 RN = SQRT(2.*ZD(1)**7/(3.*PI))
      RRN = SQRT(2.*ZD(2)**7/(3.*PI))
      DO 170 I = 1, 5
         N = N+1
         RNORM(N) = RN
         RRNORM(N) = RRN
  170 CONTINUE
      I = N-4
      RNORM(I) = RNORM(I)*0.5/RT3
      RRNORM(I) = RRNORM(I)*0.5/RT3
      I = N-1
      RNORM(I) = 0.5*RNORM(I)
      RRNORM(I) = 0.5*RRNORM(I)
      GO TO 220
  180 RN = SQRT(ZD(1)**9/(21.*PI))
      RRN = SQRT(ZD(2)**9/(21.*PI))
      DO 190 I = 1, 5
         N = N+1
         RNORM(N) = RN
         RRNORM(N) = RRN
  190 CONTINUE
      I = N-4
      RNORM(I) = 0.5*RNORM(I)/RT3
      RRNORM(I) = 0.5*RNORM(I)/RT3
      I = I-1
      RNORM(I) = 0.5*RNORM(I)
      RRNORM(I) = 0.5*RRNORM(I)
      GO TO 220
  200 RN = SQRT(2.*ZD(1)**11/(945.*PI))
      RRN = SQRT(2.*ZD(2)**11/(945.*PI))
      DO 210 I = 1, 5
         N = N+1
         RNORM(N) = RN
         RRNORM(N) = RRN
  210 CONTINUE
      I = N-4
      RNORM(I) = 0.5*RNORM(I)/RT3
      RRNORM(I) = 0.5*RRNORM(I)/RT3
      I = I-1
      RNORM(I) = RNORM(I)*0.5
      RRNORM(I) = RRNORM(I)*0.5
  220 CONTINUE
      RETURN
      END
C
      SUBROUTINE EHTMO (N3D)
C
      PARAMETER (MXPTS=41)
      COMMON /DORB/ NSHELL(25),ZTS(25),ZTP(25),ZTD(25,2),DCONST(25,2),
     *   RRNORM(100)
      COMMON /SPLIT/ XMI,YMI,ZMI,XINC,YINC,ZINC,MONE,MOLAST,NORB,NOCUT,
     *   NAT
      COMMON /DENS/ DENS(MXPTS,MXPTS,MXPTS),CONTR(100),RAD(100),
     *   RNORM(100),V2(100,100),C(50,3),IAN(49),RCUT(18),OCMO(100)
      COMMON /MINMAX/ XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX
      COMMON /EHT/ Z1S(18),Z2SP(18),Z3S(8),Z3P(8),Z3D(8)
      COMMON /IO/ IRD,ILST,IDSK1,IDSK2,IDSK3
      DIMENSION XDEL(MXPTS),YDEL(MXPTS),ZDEL(MXPTS)
      DIMENSION XDELSQ(MXPTS),YDELSQ(MXPTS),ZDELSQ(MXPTS)
      DIMENSION PTMP(MXPTS,3),V(100,100)
      DIMENSION YDELRSQ(MXPTS),IND(100),X(MXPTS),Y(MXPTS),Z(MXPTS)
      DIMENSION TMPYZ(MXPTS)
C
C       THIS SUBROUTINE IS A SIMPLIFIED VERSION OF THE DENSITY
C       COMPUTATION SECTION OF PSI77.
C       THIS ROUTINE ONLY CALCULATES EHT(3D) TYPE MO'S, THUS REMOVING
C       THE LARGE NUMBER OF IF - GOTO'S IN THE ORIGINAL.
C
C       THE PURPOSE FOR SPLITTING IT INTO SEPARATE MODULES IS SIMPLE,
C       THERE IS NO REASON TO CHECK EACH TIME THROUGH THE LOOP WHICH
C       TYPE OF WAVE FUNCTION IS BEING USED, ONCE YOU KNOW IT'S EHT(3D)
C       IT'S NEVER GOING TO CHANGE DURING THE PROGRAM RUN.
C                                       DAN SEVERANCE 9/3/87
C
      NOCUT = 0
      DO 10 NZZ = 1, MXPTS
         DO 10 NY = 1, MXPTS
            DO 10 NX = 1, MXPTS
               DENS(NX,NY,NZZ) = 0.0
   10 CONTINUE
      WRITE (*,*) ' MXPTS ',MXPTS
      X(1) = XMI
      Y(1) = YMI
      Z(1) = ZMI
      DO 20 I = 2, MXPTS
         X(I) = XINC+X(I-1)
         Y(I) = YINC+Y(I-1)
         Z(I) = ZINC+Z(I-1)
   20 CONTINUE
      NAO = 0
      Do 501 NS = 1,nat
	in = ian(ns)
        IF( IN .LT. 2 ) THEN
           NAO = NAO + 1
	ELSEIF(IN .LT. 18) THEN
           NAO = NAO + 4
        ELSEIF(IN .GT. 18) THEN
           NAO = NAO + 9
	ENDIF
 501  CONTINUE
      do 589 m=1,na0
        write(*,*)' rnorm(',m,') = ',rnorm(m)
 589  continue
      DO 500 MO=MONE,MOLAST
         DO 500 M = 1, NAO
            V(M,MO) = V2(M,MO)*RNORM(M)
 500  CONTINUE
      M = 1
      MO = MONE
      DO 250 NS = 1, NAT
         VTMP = V(M,MO)
         IN = IAN(NS)
         WRITE (*,*) ' NS, IAN(NS) ',NS,IN
C
C       RCUT CONTAINS THE DISTANCES BEYOND WHICH THE RADIAL PART
C       OF THE MOST DIFFUSE AO FOR AN ATOM IS .LT. .0005 AU. FOR
C       NORMAL CONTOUR LEVELS (.GT. .01 AU) SUCH CONTRIBUTIONS ARE
C       NEGLIGIBLE. THIS FEATURE IS DISABLED BY NOCUT.
C
C         IF (NOCUT.EQ.1.OR.R(NS).LE.RCUT(IN)) THEN
C  DISABLED FOR NOW
C
         c3 = c(ns,3)
         c2 = c(ns,2)
         c1 = c(ns,1)
         DO 30 NXYZ = 1, MXPTS
            ZDEL(NXYZ) = Z(NXYZ)-C3
            ZDELSQ(NXYZ) = ZDEL(NXYZ)*ZDEL(NXYZ)
   30    CONTINUE
         DO 32 NXYZ = 1, MXPTS
            YDEL(NXYZ) = Y(NXYZ)-C2
            YDELSQ(NXYZ) = YDEL(NXYZ)*YDEL(NXYZ)
   32    CONTINUE
         DO 33 NXYZ = 1, MXPTS
            XDEL(NXYZ) = X(NXYZ)-C1
            XDELSQ(NXYZ) = XDEL(NXYZ)*XDEL(NXYZ)
   33    CONTINUE
         IF (IN.LE.2) THEN
            Z1SIN = -Z1S(IN)
            DO 90 NZ = 1, MXPTS
               ZDSQ = ZDELSQ(NZ)
               DO 80 NY = 1, MXPTS
                  YDRSQ = YDELSQ(NY)+ZDSQ
                  DO 50 NX = 1, MXPTS
                     R = XDELSQ(NX)+YDRSQ
                     R = SQRT(R)
                     R = EXP(Z1SIN*R)
                     DENS(NX,NY,NZ) = DENS(NX,NY,NZ)+R*VTMP
   50             CONTINUE
   80          CONTINUE
   90       CONTINUE
            M = M+1
         ELSEIF (IN.LE.10) THEN
C
C                  2S AND 2P ORBITALS
C
            Z2SPIN = -Z2SP(IN)
            VTMPX = V(M+1,MO)
            VTMPY = V(M+2,MO)
            VTMPZ = V(M+3,MO)
            DO 100 NXYZ = 1, MXPTS
               PTMP(NXYZ,1) = VTMPX*XDEL(NXYZ)
               PTMP(NXYZ,2) = VTMPY*YDEL(NXYZ)
               PTMP(NXYZ,3) = VTMPZ*ZDEL(NXYZ)
  100       CONTINUE
            DO 170 NZ = 1, MXPTS
               ZDSQ = ZDELSQ(NZ)
               TMPP = PTMP(NZ,3)
               DO 160 NY = 1, MXPTS
                  YDRSQ = YDELSQ(NY)+ZDSQ
		  tmp = PTMP(NY,2) + TMPP
                  DO 120 NX = 1, MXPTS
                     RSQ2 = XDELSQ(NX)+YDRSQ
                     R = SQRT(RSQ2)
                     RADPS = EXP(Z2SPIN*R)
                     DENS(NX,NY,NZ) = DENS(NX,NY,NZ)+RADPS*
     *                 (PTMP(NX,1)+TMP )
                     RADPS = RADPS*R
                     DENS(NX,NY,NZ) = DENS(NX,NY,NZ)+RADPS*VTMP
  120             CONTINUE
C
C   The next and previous code was changed such that RADP(NX) has the
C   exponent only to start, then rad = radp*r, instead of :
C   Rad = exp
C   radp = rad * (stuff moved into PTMP)
C   rad = rad *(stuff moved into Vtmp)
C
C   Now V is premultiplied by the Rnorm factor, only PTMP need calc. to
C   Include Xdel,Ydel, and Zdel
C
  160          CONTINUE
  170       CONTINUE
            M = M+4
         ELSEIF (IN.LE.18) THEN
            IN = IN - 10
C
C                  3S AND 3P ORBITALS
C
            Z3SIN = -Z3S(IN)
            Z3PIN = -Z3P(IN)
            VTMPX = V(M+1,MO)
            VTMPY = V(M+2,MO)
            VTMPZ = V(M+3,MO)
            DO 1001 NXYZ = 1, MXPTS
               PTMP(NXYZ,1) = VTMPX*XDEL(NXYZ)
               PTMP(NXYZ,2) = VTMPY*YDEL(NXYZ)
               PTMP(NXYZ,3) = VTMPZ*ZDEL(NXYZ)
 1001       CONTINUE
            DO 1701 NZ = 1, MXPTS
               ZDSQ = ZDELSQ(NZ)
               TMPP = PTMP(NZ,3)
               DO 1601 NY = 1, MXPTS
                  YDRSQ = YDELSQ(NY)+ZDSQ
		  tmp = PTMP(NY,2) + TMPP
                  DO 1201 NX = 1, MXPTS
                     RSQ2 = XDELSQ(NX)+YDRSQ
                     R = SQRT(RSQ2)
                     RADS = EXP(Z3SIN*R)
                     RADS = RADS * RSQ2
                     DENS(NX,NY,NZ) = DENS(NX,NY,NZ)+RADS*VTMP
                     RADP = EXP(Z3PIN*R)
                     RADP = RADP * R
                     DENS(NX,NY,NZ) = DENS(NX,NY,NZ)+RADP*
     *                 (PTMP(NX,1)+TMP )
1201             CONTINUE
C
C   The next and previous code was changed such that RADP(NX) has the
C   exponent only to start, then rad = radp*r, instead of :
C   Rad = exp
C   radp = rad * (stuff moved into PTMP)
C   rad = rad *(stuff moved into Vtmp)
C
C   Now V is premultiplied by the Rnorm factor, only PTMP need calc. to
C   Include Xdel,Ydel, and Zdel
C
 1601          CONTINUE
 1701       CONTINUE
            M = M+4
        ELSE
            DO 1702 NZ = 1, MXPTS
               ZDSQ = ZDELSQ(NZ)
               DO 1602 NY = 1, MXPTS
                  YDRSQ = YDELSQ(NY)+ZDSQ
                  DO 1202 NX = 1, MXPTS
                     RSQ2 = XDELSQ(NX)+YDRSQ
                     R = SQRT(RSQ2)
                     CALL MOCALC(IN,M,NS,XDEL(NX),YDEL(NY),ZDEL(NZ)
     *                   ,DENVAR,R)
                     DENS(NX,NY,NZ) = DENS(NX,NY,NZ)+DENVAR
 1202            CONTINUE
 1602          CONTINUE
 1702       CONTINUE
            M = M + 9
	ENDIF
  250 CONTINUE
      OPEN(17,FORM='UNFORMATTED',STATUS='NEW')
      WRITE(17)MXPTS,NAT
      WRITE(17)(IAN(I),I=1,NAT)
      WRITE(17)((C(I,J),J=1,3),I=1,NAT)
      WRITE(17)(((DENS(NX,NY,NZ),NX=1,MXPTS),NY=1,MXPTS),NZ=1,MXPTS)
      WRITE(17)XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX
      CLOSE(17)
      RETURN
      END
C
C
      SUBROUTINE MOCALC (IN,M,NS,XDEL,YDEL,ZDEL,CONTR,R)
C
C        EVALUATES SLATER TYPE ORBITALS
C        J. GAO, JAN., 1986
C
C        VALENCE ORBITALS ARE: (3D,4S,4P), (4D,5S,5P), & (5D,6S,6P)
C
      PARAMETER(MXPTS=41)
      COMMON /SPLIT/ XMI,YMI,ZMI,XINC,YINC,ZINC,MONE,MOLAST,NORB,NOCUT,
     *   NAT
      COMMON /DENS/ DENS(MXPTS,MXPTS,MXPTS),JUNK(100),RAD(100),
     *   RNORM(100),V(100,100),C(50,3),IAN(49),RCUT(18),OCMO(100)
      COMMON /RPLOT/ NNN,CO(3),CM,THE,GAM,PHI,XX,YY,ZZ,IDASH,SCALE,PERZ,
     *   KA,KO,ZZZ
      COMMON /DORB/ NSHELL(25),ZTS(25),ZTP(25),ZTD(25,2),DCONST(25,2),
     *   RRNORM(100)
      DIMENSION XX(850),YY(850),ZZ(850)
C
      ND = NSHELL(NS)
      GO TO (10,10,10,20,30) ND
   10 RR = R*R
      RADS = RR*R*RNORM(M)*EXP(-ZTS(NS)*R)
      RADP = RR*RNORM(M+1)*EXP(-ZTP(NS)*R)
      RADD1 = EXP(-ZTD(NS,1)*R)
      RADD2 = EXP(-ZTD(NS,2)*R)
      GO TO 40
   20 RR = R*R
      RADS = RR*RR*RNORM(M)*EXP(-ZTS(NS)*R)
      RADP = RR*R*RNORM(M+1)*EXP(-ZTP(NS)*R)
      RADD1 = R*EXP(-ZTD(NS,1)*R)
      RADD2 = R*EXP(-ZTD(NS,2)*R)
      GO TO 40
   30 RR = R*R
      RADS = RR*RR*R*RNORM(M)*EXP(-ZTS(NS)*R)
      RADP = RR*RR*RNORM(M+1)*EXP(-ZTP(NS)*R)
      RADD1 = RR*EXP(-ZTD(NS,1)*R)
      RADD2 = RR*EXP(-ZTD(NS,2)*R)
  40  CONTR = V(M,MONE)*RADS
      CONTR = CONTR+V(M+1,MONE)*XDEL*RADP
      CONTR = CONTR+V(M+2,MONE)*YDEL*RADP
      CONTR = CONTR+V(M+3,MONE)*ZDEL*RADP
      MJ = M+4
      CONTR = CONTR+V(MJ,MONE)*(XDEL**2-YDEL**2)*(DCONST(NS,
     *   1)*RNORM(MJ)*RADD1+DCONST(NS,2)*RRNORM(MJ)*RADD2)
      MJ = M+5
      CONTR = CONTR+V(MJ,MONE)*(3.*ZDEL**2-R*R)*(DCONST(NS,1)*
     *  RNORM(MJ)*RADD1+DCONST(NS,2)*RRNORM(MJ)*RADD2)
      MJ = M+6
      CONTR = CONTR+V(MJ,MONE)*XDEL*YDEL*(DCONST(NS,1)*RNORM
     *   (MJ)*RADD1+DCONST(NS,2)*RRNORM(MJ)*RADD2)
      MJ = M+7
      CONTR = CONTR+V(MJ,MONE)*XDEL*ZDEL*(DCONST(NS,1)*RNORM
     *   (MJ)*RADD1+DCONST(NS,2)*RRNORM(MJ)*RADD2)
      MJ = M+8
      CONTR = CONTR+V(MJ,MONE)*YDEL*ZDEL*(DCONST(NS,1)*RNORM
     *   (MJ)*RADD1+DCONST(NS,2)*RRNORM(MJ)*RADD2)
      RETURN
      END
Modified: Wed Oct 13 16:00:00 1993 GMT
Page accessed 1615 times since Sat Apr 17 21:33:59 1999 GMT