CCL Home Page
Up Directory CCL Icats.o.html
The text file is also avilable here


           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 61 charge: -0.154
 atom #   2 mmtype 31 charge:  0.678
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 14 charge: -0.154
 atom #   5 mmtype 14 charge: -0.154
 atom #   6 mmtype 61 charge: -0.154
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  5 charge:  0.038
 atom #  12 mmtype  5 charge:  0.000
 atom #  13 mmtype  5 charge:  0.000
 atom #  14 mmtype  5 charge:  0.000
 atom #  15 mmtype  5 charge:  0.000
 atom #  16 mmtype  5 charge:  0.000
 atom #  17 mmtype  5 charge:  0.000
 atom #  18 mmtype  5 charge:  0.000
 atom #  19 mmtype  5 charge:  0.000
 atom #  20 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy   -6.90
 STR   2.68 BND   3.25
 S-B  -0.33  TOR -11.91
 VDW   0.74  DIP/CHRG  -1.32
 Dipole Moment    1.45
 Heat of Formation      0.000 kcal/mole;
 Strain Energy      0.000


 start CAT - 0   Np                                              
0     * * * * * Energy is minimized within 0.0030 kcal * * * * *

         * * * * * MM2 energy is   -8.7507 kcal/mol * * * * *

               Accumulated movement is 0.0224 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
         3   C-C SP3-SP3                -0.004   -0.012         -49.200
         9   C-H ALIPHATIC              -3.205  -28.845         116.100
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         1   NEO (ALKANE)               -0.707   -0.707
         3   C(SP3)-METHYL              -1.510   -4.530
                                    ----------------   ---------------
                                         be =   -37.129   s =    66.400
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc         -43.480
       Strain Energy (energy+environment corrs.)=          -10.971


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   -8.75
 STR   0.42 BND   3.16
 S-B   0.02  TOR -11.91
 VDW   0.90  DIP/CHRG  -1.34
 Dipole Moment    1.32
 Incomplete heat of formation    -43.480 kcal/mole
 end CAT - 0   Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   4  17   (type  61 31 35 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 61 charge: -0.154
 atom #   2 mmtype 31 charge:  0.667
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 35 charge: -0.050
 atom #   5 mmtype 14 charge: -0.154
 atom #   6 mmtype 61 charge: -0.154
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  5 charge:  0.038
 atom #  17 mmtype 20 charge: -0.100
 atom #  18 mmtype 20 charge: -0.100
 atom #  19 mmtype  5 charge:  0.000
 atom #  20 mmtype  5 charge:  0.000
 atom #  21 mmtype  5 charge:  0.000
 atom #  22 mmtype  5 charge:  0.000
 atom #  23 mmtype  5 charge:  0.000
 atom #  24 mmtype  5 charge:  0.000
 atom #  25 mmtype  5 charge:  0.000
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy   -3.57
 STR   2.65 BND   4.26
 S-B  -0.28  TOR -13.74
 VDW   0.96  DIP/CHRG   2.57
 Dipole Moment    1.04
 Heat of Formation    -43.480 kcal/mole;
 Strain Energy    -10.971


 start CAT - 1E  Np                                              
0     * * * * * Energy is minimized within 0.0057 kcal * * * * *

         * * * * * MM2 energy is   -4.9951 kcal/mol * * * * *

               Accumulated movement is 0.0107 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  4 does not have programmed enthalpy increments. 
         7   C-C SP3-SP3                -0.004   -0.028        -114.800
        20   C-H ALIPHATIC              -3.205  -64.100         258.000
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         2   NEO (ALKANE)               -0.707   -1.414
         6   C(SP3)-METHYL              -1.510   -9.060
                                    ----------------   ---------------
                                         be =   -77.637   s =   142.700
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc         -80.232
       Strain Energy (energy+environment corrs.)=          -10.095


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   -5.00
 STR   1.07 BND   4.24
 S-B  -0.10  TOR -13.74
 VDW   0.93  DIP/CHRG   2.60
 Dipole Moment    1.01
 Incomplete heat of formation    -80.232 kcal/mole
 end CAT - 1E  Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   6  17   (type  61 31 58 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 61 charge: -0.154
 atom #   2 mmtype 31 charge:  0.667
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 14 charge: -0.154
 atom #   5 mmtype 14 charge: -0.154
 atom #   6 mmtype 58 charge: -0.050
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  5 charge:  0.038
 atom #  17 mmtype 20 charge: -0.100
 atom #  18 mmtype 20 charge: -0.100
 atom #  19 mmtype  5 charge:  0.000
 atom #  20 mmtype  5 charge:  0.000
 atom #  21 mmtype  5 charge:  0.000
 atom #  22 mmtype  5 charge:  0.000
 atom #  23 mmtype  5 charge:  0.000
 atom #  24 mmtype  5 charge:  0.000
 atom #  25 mmtype  5 charge:  0.000
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy    1.89
 STR   3.27 BND   4.57
 S-B  -0.38  TOR  -7.13
 VDW  -0.92  DIP/CHRG   2.48
 Dipole Moment    1.72
 Heat of Formation    -80.232 kcal/mole;
 Strain Energy    -10.095


 start CAT - 1A  Np                                              
0     * * * * * Energy is minimized within 0.0057 kcal * * * * *

         * * * * * MM2 energy is    0.5468 kcal/mol * * * * *

               Accumulated movement is 0.0091 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  6 does not have programmed enthalpy increments. 
         7   C-C SP3-SP3                -0.004   -0.028        -114.800
        20   C-H ALIPHATIC              -3.205  -64.100         258.000
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         2   NEO (ALKANE)               -0.707   -1.414
         6   C(SP3)-METHYL              -1.510   -9.060
                                    ----------------   ---------------
                                         be =   -77.637   s =   142.700
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc         -74.690
       Strain Energy (energy+environment corrs.)=           -4.553


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy    0.55
 STR   1.28 BND   4.65
 S-B  -0.15  TOR  -7.11
 VDW  -0.63  DIP/CHRG   2.51
 Dipole Moment    1.69
 Incomplete heat of formation    -74.690 kcal/mole
 end CAT - 1A  Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   4  22   (type  61 31 35 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 61 charge: -0.154
 atom #   2 mmtype 31 charge:  0.656
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 35 charge: -0.050
 atom #   5 mmtype 35 charge: -0.050
 atom #   6 mmtype 61 charge: -0.154
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.107
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  5 charge:  0.038
 atom #  22 mmtype 20 charge: -0.100
 atom #  23 mmtype 20 charge: -0.100
 atom #  24 mmtype 20 charge: -0.100
 atom #  25 mmtype 20 charge: -0.100
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy    4.47
 STR   2.96 BND   6.70
 S-B  -0.48  TOR -15.40
 VDW   4.25  DIP/CHRG   6.44
 Dipole Moment    1.28
 Heat of Formation    -74.690 kcal/mole;
 Strain Energy     -4.553


 start CAT - 2EE Np                                              
0     * * * * * Energy is minimized within 0.0084 kcal * * * * *

         * * * * * MM2 energy is    3.5385 kcal/mol * * * * *

               Accumulated movement is 0.0052 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  4 does not have programmed enthalpy increments. 
 * * * * * error - bond 16-  5 does not have programmed enthalpy increments. 
        11   C-C SP3-SP3                -0.004   -0.044        -180.400
        31   C-H ALIPHATIC              -3.205  -99.355         399.900
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         3   NEO (ALKANE)               -0.707   -2.121
         9   C(SP3)-METHYL              -1.510  -13.590
                                    ----------------   ---------------
                                         be =  -118.145   s =   219.000
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -112.207
       Strain Energy (energy+environment corrs.)=           -4.442


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy    3.54
 STR   1.90 BND   6.69
 S-B  -0.32  TOR -15.41
 VDW   4.20  DIP/CHRG   6.47
 Dipole Moment    1.21
 Incomplete heat of formation   -112.207 kcal/mole
 end CAT - 2EE Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   5  22   (type  61 31 35 20) are used
  0.000  0.000  0.000
 generalized constants for angle   1   2   6  24   (type  61 31 58 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 61 charge: -0.154
 atom #   2 mmtype 31 charge:  0.656
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 14 charge: -0.154
 atom #   5 mmtype 35 charge: -0.050
 atom #   6 mmtype 58 charge: -0.050
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.107
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  5 charge:  0.038
 atom #  22 mmtype 20 charge: -0.100
 atom #  23 mmtype 20 charge: -0.100
 atom #  24 mmtype 20 charge: -0.100
 atom #  25 mmtype 20 charge: -0.100
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy    5.87
 STR   3.13 BND   6.49
 S-B  -0.49  TOR  -8.70
 VDW  -0.86  DIP/CHRG   6.29
 Dipole Moment    2.01
 Heat of Formation   -112.207 kcal/mole;
 Strain Energy     -4.442


 start CAT - 2AE Np                                              
0     * * * * * Energy is minimized within 0.0084 kcal * * * * *

         * * * * * MM2 energy is    4.9562 kcal/mol * * * * *

               Accumulated movement is 0.0044 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  5 does not have programmed enthalpy increments. 
 * * * * * error - bond 16-  6 does not have programmed enthalpy increments. 
        11   C-C SP3-SP3                -0.004   -0.044        -180.400
        31   C-H ALIPHATIC              -3.205  -99.355         399.900
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         3   NEO (ALKANE)               -0.707   -2.121
         9   C(SP3)-METHYL              -1.510  -13.590
                                    ----------------   ---------------
                                         be =  -118.145   s =   219.000
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -110.789
       Strain Energy (energy+environment corrs.)=           -3.024


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy    4.96
 STR   1.83 BND   6.55
 S-B  -0.29  TOR  -8.67
 VDW  -0.81  DIP/CHRG   6.34
 Dipole Moment    1.96
 Incomplete heat of formation   -110.789 kcal/mole
 end CAT - 2AE Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   6  24   (type  58 31 58 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 58 charge: -0.050
 atom #   2 mmtype 31 charge:  0.656
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 14 charge: -0.154
 atom #   5 mmtype 14 charge: -0.154
 atom #   6 mmtype 58 charge: -0.050
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.107
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype 20 charge: -0.100
 atom #  22 mmtype 20 charge: -0.100
 atom #  23 mmtype  5 charge:  0.038
 atom #  24 mmtype 20 charge: -0.100
 atom #  25 mmtype 20 charge: -0.100
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy   14.34
 STR   4.44 BND   5.82
 S-B  -0.23  TOR  -2.54
 VDW   0.56  DIP/CHRG   6.29
 Dipole Moment    0.29
 Heat of Formation   -110.789 kcal/mole;
 Strain Energy     -3.024


 start CAT - 2AA Np                                              
0     * * * * * Energy is minimized within 0.0084 kcal * * * * *

         * * * * * MM2 energy is   13.5546 kcal/mol * * * * *

               Accumulated movement is 0.0073 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  6 does not have programmed enthalpy increments. 
 * * * * * error - bond 16-  1 does not have programmed enthalpy increments. 
        11   C-C SP3-SP3                -0.004   -0.044        -180.400
        31   C-H ALIPHATIC              -3.205  -99.355         399.900
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         3   NEO (ALKANE)               -0.707   -2.121
         9   C(SP3)-METHYL              -1.510  -13.590
                                    ----------------   ---------------
                                         be =  -118.145   s =   219.000
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -102.190
       Strain Energy (energy+environment corrs.)=            5.575


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   13.55
 STR   2.77 BND   5.95
 S-B  -0.33  TOR  -2.52
 VDW   1.34  DIP/CHRG   6.34
 Dipole Moment    0.30
 Incomplete heat of formation   -102.190 kcal/mole
 end CAT - 2AA Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   4  27   (type  61 31 35 20) are used
  0.000  0.000  0.000
 generalized constants for angle   1   2   6  31   (type  61 31 58 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 61 charge: -0.154
 atom #   2 mmtype 31 charge:  0.645
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 35 charge: -0.050
 atom #   5 mmtype 35 charge: -0.050
 atom #   6 mmtype 58 charge: -0.050
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.107
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  1 charge:  0.107
 atom #  22 mmtype  1 charge:  0.000
 atom #  23 mmtype  1 charge:  0.000
 atom #  24 mmtype  1 charge:  0.000
 atom #  25 mmtype  1 charge:  0.000
 atom #  26 mmtype  5 charge:  0.038
 atom #  27 mmtype 20 charge: -0.100
 atom #  28 mmtype 20 charge: -0.100
 atom #  29 mmtype 20 charge: -0.100
 atom #  30 mmtype 20 charge: -0.100
 atom #  31 mmtype 20 charge: -0.100
 atom #  32 mmtype 20 charge: -0.100
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 atom #  57 mmtype  5 charge:  0.000
 atom #  58 mmtype  5 charge:  0.000
 atom #  59 mmtype  5 charge:  0.000
 atom #  60 mmtype  5 charge:  0.000
 atom #  61 mmtype  5 charge:  0.000
 atom #  62 mmtype  5 charge:  0.000
 atom #  63 mmtype  5 charge:  0.000
 atom #  64 mmtype  5 charge:  0.000
 atom #  65 mmtype  5 charge:  0.000
 atom #  66 mmtype  5 charge:  0.000
 atom #  67 mmtype  5 charge:  0.000
 atom #  68 mmtype  5 charge:  0.000
 atom #  69 mmtype  5 charge:  0.000
 atom #  70 mmtype  5 charge:  0.000
 atom #  71 mmtype  5 charge:  0.000
 atom #  72 mmtype  5 charge:  0.000
 atom #  73 mmtype  5 charge:  0.000
 atom #  74 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy   12.64
 STR   3.14 BND   7.98
 S-B  -0.52  TOR  -9.94
 VDW   1.55  DIP/CHRG  10.42
 Dipole Moment    2.35
 Heat of Formation   -102.190 kcal/mole;
 Strain Energy      5.575


 start CAT - 3A  Np                                              
0     * * * * * Energy is minimized within 0.0111 kcal * * * * *

         * * * * * MM2 energy is   12.1572 kcal/mol * * * * *

               Accumulated movement is 0.0038 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  4 does not have programmed enthalpy increments. 
 * * * * * error - bond 16-  5 does not have programmed enthalpy increments. 
 * * * * * error - bond 21-  6 does not have programmed enthalpy increments. 
        15   C-C SP3-SP3                -0.004   -0.060        -246.000
        42   C-H ALIPHATIC              -3.205 -134.610         541.800
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         4   NEO (ALKANE)               -0.707   -2.828
        12   C(SP3)-METHYL              -1.510  -18.120
                                    ----------------   ---------------
                                         be =  -158.653   s =   295.300
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -144.096
       Strain Energy (energy+environment corrs.)=            1.297


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   12.16
 STR   2.57 BND   7.98
 S-B  -0.45  TOR  -9.93
 VDW   1.52  DIP/CHRG  10.47
 Dipole Moment    2.33
 Incomplete heat of formation   -144.096 kcal/mole
 end CAT - 3A  Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   4  29   (type  58 31 35 20) are used
  0.000  0.000  0.000
 generalized constants for angle   1   2   6  31   (type  58 31 58 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 58 charge: -0.050
 atom #   2 mmtype 31 charge:  0.645
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 35 charge: -0.050
 atom #   5 mmtype 14 charge: -0.154
 atom #   6 mmtype 58 charge: -0.050
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.107
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  1 charge:  0.107
 atom #  22 mmtype  1 charge:  0.000
 atom #  23 mmtype  1 charge:  0.000
 atom #  24 mmtype  1 charge:  0.000
 atom #  25 mmtype  1 charge:  0.000
 atom #  26 mmtype 20 charge: -0.100
 atom #  27 mmtype 20 charge: -0.100
 atom #  28 mmtype  5 charge:  0.038
 atom #  29 mmtype 20 charge: -0.100
 atom #  30 mmtype 20 charge: -0.100
 atom #  31 mmtype 20 charge: -0.100
 atom #  32 mmtype 20 charge: -0.100
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 atom #  57 mmtype  5 charge:  0.000
 atom #  58 mmtype  5 charge:  0.000
 atom #  59 mmtype  5 charge:  0.000
 atom #  60 mmtype  5 charge:  0.000
 atom #  61 mmtype  5 charge:  0.000
 atom #  62 mmtype  5 charge:  0.000
 atom #  63 mmtype  5 charge:  0.000
 atom #  64 mmtype  5 charge:  0.000
 atom #  65 mmtype  5 charge:  0.000
 atom #  66 mmtype  5 charge:  0.000
 atom #  67 mmtype  5 charge:  0.000
 atom #  68 mmtype  5 charge:  0.000
 atom #  69 mmtype  5 charge:  0.000
 atom #  70 mmtype  5 charge:  0.000
 atom #  71 mmtype  5 charge:  0.000
 atom #  72 mmtype  5 charge:  0.000
 atom #  73 mmtype  5 charge:  0.000
 atom #  74 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy   13.35
 STR   3.58 BND   7.18
 S-B  -0.45  TOR  -4.02
 VDW  -3.24  DIP/CHRG  10.31
 Dipole Moment    1.65
 Heat of Formation   -144.096 kcal/mole;
 Strain Energy      1.297


 start CAT - 3E  Np                                              
0     * * * * * Energy is minimized within 0.0111 kcal * * * * *

         * * * * * MM2 energy is   12.9317 kcal/mol * * * * *

               Accumulated movement is 0.0049 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  4 does not have programmed enthalpy increments. 
 * * * * * error - bond 16-  6 does not have programmed enthalpy increments. 
 * * * * * error - bond 21-  1 does not have programmed enthalpy increments. 
        15   C-C SP3-SP3                -0.004   -0.060        -246.000
        42   C-H ALIPHATIC              -3.205 -134.610         541.800
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         4   NEO (ALKANE)               -0.707   -2.828
        12   C(SP3)-METHYL              -1.510  -18.120
                                    ----------------   ---------------
                                         be =  -158.653   s =   295.300
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -143.321
       Strain Energy (energy+environment corrs.)=            2.072


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   12.93
 STR   2.78 BND   7.19
 S-B  -0.50  TOR  -3.97
 VDW  -2.93  DIP/CHRG  10.35
 Dipole Moment    1.64
 Incomplete heat of formation   -143.321 kcal/mole
 end CAT - 3E  Np                                              

           The following torsional parameters are read in
                   (* for 4-membered ring)
               atom type nos.     v1      v2      v3
               1   2  31  61     0.000  -2.950   0.000
               5   2  31  61     0.000  -2.950   0.000
              61  31  35   1     0.000  -1.000   0.000
              61  31  58   1     0.000   1.000   0.000
 generalized constants for angle   1   2   4  34   (type  58 31 35 20) are used
  0.000  0.000  0.000
 generalized constants for angle   1   2   6  38   (type  58 31 58 20) are used
  0.000  0.000  0.000


          The following  stretching parameters are read in
               bond type    k(s)      l(0)         l(t2)
               31 -  61    3.000     2.7000     0.0000
 atom #   1 mmtype 58 charge: -0.050
 atom #   2 mmtype 31 charge:  0.635
 atom #   3 mmtype  2 charge: -0.101
 atom #   4 mmtype 35 charge: -0.050
 atom #   5 mmtype 35 charge: -0.050
 atom #   6 mmtype 58 charge: -0.050
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.107
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.107
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  1 charge:  0.107
 atom #  22 mmtype  1 charge:  0.000
 atom #  23 mmtype  1 charge:  0.000
 atom #  24 mmtype  1 charge:  0.000
 atom #  25 mmtype  1 charge:  0.000
 atom #  26 mmtype  1 charge:  0.107
 atom #  27 mmtype  1 charge:  0.000
 atom #  28 mmtype  1 charge:  0.000
 atom #  29 mmtype  1 charge:  0.000
 atom #  30 mmtype  1 charge:  0.000
 atom #  31 mmtype 20 charge: -0.100
 atom #  32 mmtype 20 charge: -0.100
 atom #  33 mmtype  5 charge:  0.038
 atom #  34 mmtype 20 charge: -0.100
 atom #  35 mmtype 20 charge: -0.100
 atom #  36 mmtype 20 charge: -0.100
 atom #  37 mmtype 20 charge: -0.100
 atom #  38 mmtype 20 charge: -0.100
 atom #  39 mmtype 20 charge: -0.100
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 atom #  57 mmtype  5 charge:  0.000
 atom #  58 mmtype  5 charge:  0.000
 atom #  59 mmtype  5 charge:  0.000
 atom #  60 mmtype  5 charge:  0.000
 atom #  61 mmtype  5 charge:  0.000
 atom #  62 mmtype  5 charge:  0.000
 atom #  63 mmtype  5 charge:  0.000
 atom #  64 mmtype  5 charge:  0.000
 atom #  65 mmtype  5 charge:  0.000
 atom #  66 mmtype  5 charge:  0.000
 atom #  67 mmtype  5 charge:  0.000
 atom #  68 mmtype  5 charge:  0.000
 atom #  69 mmtype  5 charge:  0.000
 atom #  70 mmtype  5 charge:  0.000
 atom #  71 mmtype  5 charge:  0.000
 atom #  72 mmtype  5 charge:  0.000
 atom #  73 mmtype  5 charge:  0.000
 atom #  74 mmtype  5 charge:  0.000
 atom #  75 mmtype  5 charge:  0.000
 atom #  76 mmtype  5 charge:  0.000
 atom #  77 mmtype  5 charge:  0.000
 atom #  78 mmtype  5 charge:  0.000
 atom #  79 mmtype  5 charge:  0.000
 atom #  80 mmtype  5 charge:  0.000
 atom #  81 mmtype  5 charge:  0.000
 atom #  82 mmtype  5 charge:  0.000
 atom #  83 mmtype  5 charge:  0.000
 atom #  84 mmtype  5 charge:  0.000
 atom #  85 mmtype  5 charge:  0.000
 atom #  86 mmtype  5 charge:  0.000
 atom #  87 mmtype  5 charge:  0.000
 atom #  88 mmtype  5 charge:  0.000
 atom #  89 mmtype  5 charge:  0.000
 atom #  90 mmtype  5 charge:  0.000
 atom #  91 mmtype  5 charge:  0.000
 atom #  92 mmtype  5 charge:  0.000


          The following vdw parameters are read in
               atom type    epsilon    radius lpde ihtyp ihdonr
                   61        2.320     0.4240       0       0       0


          The following bending parameters are read in
                   (* for 4-membered ring)
                   (+ for 3-membered ring)

               atom types     k(b)   theta(0)   ed. type
                 2 31 61     0.350    95.000       0   
                14 31 61     0.250    90.000       0   
                61 31 61     0.450   178.000       0   
                35 31 61     0.210    89.000       0   
                58 31 61     0.400   177.000       0   


 MMX Energy   17.33
 STR   3.13 BND   9.79
 S-B  -0.58  TOR  -6.15
 VDW  -2.19  DIP/CHRG  13.33
 Dipole Moment    0.26
 Heat of Formation   -143.321 kcal/mole;
 Strain Energy      2.072


 start CAT - 4   Np                                              
0     * * * * * Energy is minimized within 0.0138 kcal * * * * *

         * * * * * MM2 energy is   17.3250 kcal/mol * * * * *

               Accumulated movement is 0.0007 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 11-  4 does not have programmed enthalpy increments. 
 * * * * * error - bond 16-  5 does not have programmed enthalpy increments. 
 * * * * * error - bond 21-  6 does not have programmed enthalpy increments. 
 * * * * * error - bond 26-  1 does not have programmed enthalpy increments. 
        19   C-C SP3-SP3                -0.004   -0.076        -311.600
        53   C-H ALIPHATIC              -3.205 -169.865         683.700
         1   C-C SP2-SP3                 0.170    0.170         -14.300
         1   C-H OLEFINIC               -3.205   -3.205          13.800
         5   NEO (ALKANE)               -0.707   -3.535
        15   C(SP3)-METHYL              -1.510  -22.650
                                    ----------------   ---------------
                                         be =  -199.161   s =   371.600
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -179.436
       Strain Energy (energy+environment corrs.)=            3.585


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   17.32
 STR   3.13 BND   9.80
 S-B  -0.58  TOR  -6.15
 VDW  -2.20  DIP/CHRG  13.33
 Dipole Moment    0.26
 Incomplete heat of formation   -179.436 kcal/mole
 end CAT - 4   Np                                              


 MMX Energy   17.32
 STR   3.13 BND   9.80
 S-B  -0.58  TOR  -6.15
 VDW  -2.20  DIP/CHRG  13.33
 Dipole Moment    0.26
 Incomplete heat of formation   -179.436 kcal/mole
 end CAT - 4   Np                                              
back to up page
Modified: Mon Sep 21 19:59:29 1998 GMT
Page accessed 1597 times since Sun Jun 6 11:24:31 2010 GMT