chemtex
|
README,
appdb.tex,
appdc.tex,
chap3a.tex,
chap4.tex,
chap5.tex,
chap6a.tex,
chap6b.tex,
chap6c.tex,
chap6d.tex,
chemtex.shar,
macros.tex
|
|
|
\documentstyle[12pt]{report}
\nofiles
\def\LATEX{\LaTeX}
\let\TEX = \TeX
\setcounter{totalnumber}{5}
\setcounter{topnumber}{3}
\setcounter{bottomnumber}{3}
\setlength{\oddsidemargin}{3.9cm} %real measurement 1.5in
\setlength{\textwidth}{5.7in} %right margin is now 1in
\setlength{\topmargin}{1cm}
\setlength{\headheight}{.6cm}
\setlength{\textheight}{8.5in}
\setlength{\parindent}{1cm}
\renewcommand{\baselinestretch}{1.5}
\raggedbottom
\setlength{\itemsep}{-2mm}
\input{init.tex}
\input{rings1.tex}
\input{fused.tex}
\input{sixb.tex}
\input{terp.tex}
\begin {document}
\setcounter{page}{54}
\setcounter{chapter}{6}
\textfont1=\tenrm
\initial
\len=4
\newcommand{\ri}{No action is taken for any other value of
the argument}
\noindent B. \underline{Macros for Alicyclic Ring Systems}
\vspace{\len mm}
\indent i. \underline{Macro $\backslash $threering[9]}.
\ This macro typesets the cyclopropane ring. The aromatic
cyclopropenyl cation is drawn with a circle enclosing a plus
sign inside the ring. The ring positions to which ${\rm R^1}$,
${\rm R^2}$, and ${\rm R^3}$ are attached are designated as
position 1, 2, and 3, respectively:
\[ \threering{$R^1$}{$R^2$}{$R^3$}{$R^4$}{$R^5$}{$R^6$}{S}{Q}{Q}
\hspace{3cm}
\threering{$R^1$}{$R^2$}{$R^3$}{Q}{Q}{Q}{S}{Q}{C} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1 -- 6:}] An argument of ``Q''
causes no action. All other argument values are used as
the respective substituent formulas ${\rm R^1}$, ${\rm R^2}$,
${\rm R^3}$, ${\rm R^4}$, ${\rm R^5}$, and ${\rm R^6}$.
The bond line to ${\rm R^2}$ is straight if the circle is in
the ring or if there is no second substituent at position 2,
and slanted otherwise.
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``D'' typesets
a second bond between ring positions 1 and 3. \ri .
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``Q'' causes
no action. All other argument values cause an outside double
bond to be drawn from ring position 2, and the argument itself
to be put at the end of the double bond as the substituent formula.
\item[{\rm \ \ \ \ \ \ Argument 9:}] An argument of ``C'' typesets
a circle enclosing a plus sign inside the ring. All other
argument values cause no action.
\end{description}
\vspace{\len mm}
\indent ii. \underline{Macro $\backslash $fourring[9]}.
\ This macro typesets the cyclobutane ring. The ring positions
to which ${\rm R^1}$, ${\rm R^2}$, ${\rm R^3}$, and ${\rm R^4}$
are attached are designated position 1, 2, 3, and 4, respectively.
\[ \fourring{$R^1$}{$R^2$}{$R^3$}{$R^4$}{$R^5$}{$R^6$}{S}{S}{Q}
\hspace{3cm}
\fourring{Q}{Q}{Q}{Q}{Q}{Q}{Q}{D}{$R^9$} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1 -- 6:}] An argument of ``Q'' causes
no action. All other argument values are used as the respective
substituent formulas ${\rm R^1}$, ${\rm R^2}$, ${\rm R^3}$,
${\rm R^4}$, ${\rm R^5}$, and ${\rm R^6}$.
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``D'' typesets
a second bond between ring positions 1 and 2. \ri .
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``D'' typesets
a second bond between ring positions 3 and 4. \ri .
\item[{\rm \ \ \ \ \ \ Argument 9:}] An argument of ``Q'' causes
no action. All other argument values cause an outside
double bond to be drawn from ring position 2, and the
argument itself to be put at the end of the double bond
as substituent formula ${\rm R^9}$.
\end{description}
\vspace{\len mm}
\indent iii. \underline{Macro$\backslash $fivering[9]}.
\ This macro typesets the cyclopentane ring. The aromatic
cyclopentadienyl anion is drawn with a circle enclosing a
minus sign inside the ring. The ring positions to which
${\rm R^1}$, ${\rm R^2}$, ${\rm R^3}$, ${\rm R^4}$, and
${\rm R^5}$ are attached are designated as position
1, 2, 3, 4, and 5, respectively:
\[ \fivering{$R^1$}{$R^2$}{Q}{$R^4$}{$R^5$}{$R^6$}{$R^7$}{$R^8$}{Q}
\hspace{3cm}
\fivering{Q}{Q}{$R^3$}{Q}{Q}{S}{S}{Q}{C} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1 -- 5:}] An argument of ``Q''
causes no action. All other argument values are used as the
respective substituent formulas ${\rm R^1}$, ${\rm R^2}$,
${\rm R^3}$, ${\rm R^4}$, and ${\rm R^5}$.
\item[{\rm \ \ \ \ \ \ Argument 6:}] An argument of ``D'' typesets
a second bond between ring positions 1 and 2. An argument
of ``S'' causes no action. All other argument values are
used as the substituent formula ${\rm R^6}$.
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``D'' typesets
a second bond between ring positions 4 and 5. An argument
of ``S'' causes no action. All other argument values are
used as the substituent formula ${\rm R^7}$.
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``Q'' causes
no action. All other argument values cause an outside
double bond to be drawn from ring position 3, and the
argument itself to be put at the end of the double bond
as substituent formula ${\rm R^8}$.
\item[{\rm \ \ \ \ \ \ Argument 9:}] An argument of ``C'' typesets
a circle enclosing a minus sign inside the ring. \ri .
\end{description}
\vspace{\len mm}
\indent iv. \underline{Macro$\backslash $sixring[9]}.
\ This macro typesets a carbon sixring as a regular hexagon.
A benzene ring can be drawn with alternating double bonds or
with a circle inside the ring. The ring positions to which
${\rm R^1}$, ${\rm R^2}$, ${\rm R^3}$, ${\rm R^4}$, ${\rm R^5}$,
and ${\rm R^6}$ are attached are designated as position
1, 2, 3, 4, 5, and 6, respectively:
\[ \sixring{$R^1$}{$R^2$}{Q}{$R^4$}{$R^5$}{$R^6$}{$R^7$}{$R^8$}{D}
\hspace{3cm}
\sixring{Q}{Q}{$R^3$}{Q}{Q}{Q}{S}{S}{C} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1 -- 6:}] An argument of ``Q'' causes
no action. All other argument values are used as the respective
substituent formulas ${\rm R^1}$, ${\rm R^2}$, ${\rm R^3}$,
${\rm R^4}$, ${\rm R^5}$, and ${\rm R^6}$.
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``D'' typesets
a second bond between ring positions 1 and 2. An argument
of ``S'' causes no action. All other argument values are
used as the substituent formula ${\rm R^7}$.
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``D'' typesets
a second bond between ring positions 3 and 4. An argument
of ``S'' causes no action. All other argument values cause
an outside double bond to be drawn from ring position 3
and the argument itself to be put at the end of the double
bond as substituent formula ${\rm R^8}$.
\item[{\rm \ \ \ \ \ \ Argument 9:}] An argument of ``D'' typesets
a second bond between ring positions 5 and 6. An argument
of ``C'' typesets a circle inside the ring. \ri .
\end{description}
\vspace{\len mm}
\indent v. \underline{Macro $\backslash $sixringa[9]}.
\ This macro differs from \verb+\+sixring only in the positions
of the double bonds. A value of ``D'' for arguments 7, 8, and 9
puts a double bond between ring positions 1 and 6, ring positions
2 and 3, and ring positions 4 and 5, respectively.
Since the carbon sixring is so common, more options are needed
for it than for the other rings.
\vspace{\len mm}
\indent vi. \underline{Macro $\backslash $sixringb[9]}.
\ This macro is also very similar to \verb+\+sixring, but it
allows all 17 chemically possible combinations of double bonds,
including the three quinoid structures that can not be typeset
with \verb+\+sixring or \verb+\+sixringa.
\[ \sixringb{Q}{Q}{Q}{Q}{Q}{Q}{$R^7$}{$R^8$}{9} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1 -- 6:}] These arguments have the
same meaning as in \verb+\+sixring.
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``Q'' causes
no action. All other argument values cause an outside
double bond to be drawn from ring position 6 and the
argument itself to be put at the end of the double bond
as substituent formula ${\rm R^7}$.
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``Q'' causes
no action. All other argument values cause an outside
double bond to be drawn from ring position 3 and the
argument itself to be put at the end of the double bond
as substituent formula ${\rm R^8}$.
\item[{\rm \ \ \ \ \ \ Argument 9:}] An integer number. The number
zero causes the circle to be drawn inside the ring.
All other integers are interpreted as a combination of
ring double bonds according to the bit pattern corresponding
to the decimal integer: A bit pattern of 000001 is interpreted
as a double bond beginning at ring position 1, a bit pattern
of 100000 (integer 32) as a double bond beginning at ring
position 6. Thus, argument 9 for the diagram shown above
is 9 (001001).
No action occurs for argument values that correspond to
a combination of double bonds which is chemically not
possible, namely any combination with two adjoining
double bonds.
\end{description}
\vspace{\len mm}
\indent vii. \underline{Macro$\backslash $chair[8]}.
\ This macro typesets the saturated carbon sixring in its most
favorable conformation. The axial and equatorial bond lines
to the substituents are always drawn by this macro, even when
there is no substituent in a particular position. This is the
usual practice in drawing the chair form.
\[ \chair{$R^1$}{$R^2$}{$R^3$}{$R^4$}{$R^5$}{$R^6$}{$R^7$}{$R^8$} \]
The eight arguments represent the respective substituent formulas
${\rm R^1}$ -- ${\rm R^8}$.
\pagebreak
\indent viii. \underline{Macro $\backslash $naphth[9]}.
\ This macro typesets the aromatic naphthalene ring system,
the fully saturated decalin ring system, and the
1,2,3,4-tetra\-hydro\-naphthalene shown in the diagram. The position
numbers 1~--~8 are specified by the nomenclature rules of
chemistry.
\[ \naphth{$R^1$}{$R^2$}{$R^3$}{$R^4$}{$R^5$}{$R^6$}{$R^7$}
{$R^8$}{Q} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1~--~8:}] An argument of Q causes
no action. All other argument values are used as the
respective substituent formulas ${\rm R^1}$~--~${\rm R^8}$.
\item[{\rm \ \ \ \ \ \ Argument 9:}] A value of ``S'' typesets the
ring system with no double bonds (decalin). A value of ``D''
typesets the aromatic system naphthalene with alternating
double bonds. All other argument values draw the partially
saturated system shown above.
\end{description}
\vspace{\len mm}
\indent ix. \underline{Macro $\backslash $terpene[9]}.
\ This macro typesets the bicyclo(2.2.1)heptane ring system
found in such terpenes as borneol, camphor, and fenchol.
The position numbers 1~--~7 are specified by the
nomenclature rules of chemistry.
\[ \terpene{$R^1$}{$R^2$}{$R^3$}{$R^4$}{$R^5$}{$R^6$}
{M}{$R^8$}{Q} \hspace{3.5cm}
\terpene{Q}{Q}{Q}{Q}{Q}{Q}{Q}{O}{$R^9$} \]
\begin{description}
\item[{\rm \ \ \ \ \ \ Arguments 1~--~6:}] An argument of ``Q''
causes no action. All other argument values are used
as the respective substituent formulas ${\rm R^1}$~--~
${\rm R^6}$.
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``M''
prints two methyl groups on bonds extending from
carbon \#7. All other arguments cause no action.
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``Q''
causes no action. An argument of ``O'' prints an
oxo group at carbon \#2. All other argument values
are used as a second substituent on carbon \#2,
shown as ${\rm R^8}$.
\item[{\rm \ \ \ \ \ \ Argument 9:}] An argument of ``Q''
causes no action. An argument of ``D'' prints a second bond
between positions 2 and 3. All other argument values
are used as a second substituent on carbon \#3,
shown as ${\rm R^9}$.
\end{description}
\vspace{\len mm}
\indent x. \underline{Macro $\backslash $steroid[9]}.
\ This macro typesets the steroid skeleton. The position
numbers are specified by the nomenclature rules. The
arguments are selected such that common types of steroids
can be printed. Cholesterol, estradiol, progesterone,
and cortisone are some of the steroids that can be produced.
\pht=1600 \pw=1200
\[ \steroid{$R^{11}$}{D}{$R^3$}{Q}{Q}{D}{$R^{20}$}
{$R^{21}$}{$R^{17}$} \]
\pht=900 \pw=400
\begin{description}
\item[{\rm \ \ \ \ \ \ Argument 1:}] An argument of ``D''
prints a second bond between positions 1 and 2.
An argument of ``Q'' causes no action. All other
argument values cause an outside double bond to be
drawn from position 11 and the argument itself to be
put at the end of the double bond as substituent
formula ${\rm R^{11}}$.
\newpage
\item[{\rm \ \ \ \ \ \ Argument 2:}] An argument of ``D''
prints a second bond between positions 3 and 4
(this double bond is shown in the diagram).
An argument of ``Q'' causes no action. All other
argument values cause an outside double bond to be
drawn from position 3 and the argument itself to be
put at the end of the double bond.
\item[{\rm \ \ \ \ \ \ Argument 3:}] An argument of ``Q''
causes no action. All other argument values cause
a single bond to be drawn from position 3 and the
argument itself to be put at the end of the bond
as substituent formula ${\rm R^3}$.
\item[{\rm \ \ \ \ \ \ Argument 4:}] An argument of ``D''
prints a second bond between positions 4 and 5.
All other argument values cause no action.
\item[{\rm \ \ \ \ \ \ Argument 5:}] An argument of ``D''
prints a second bond between positions 5 and 6.
An argument of ``Q'' causes no action. All other
argument values cause an outside double bond
to be drawn from position 17 and the argument
itself to be put at the end of the double bond.
\item[{\rm \ \ \ \ \ \ Argument 6:}] An argument of ``D''
prints a second bond between positions 5 and 10
(shown in the diagram). An argument of ``M''
prints the methyl group containing carbon \#19 and the
bond to it.
\ri .
\item[{\rm \ \ \ \ \ \ Argument 7:}] An argument of ``Q''
causes no action. All other argument values print
the substituent formula beginning with carbon \#20,
represented by ${\rm R^{20}}$ in the diagram, and the
bond to it.
\item[{\rm \ \ \ \ \ \ Argument 8:}] An argument of ``Q''
causes no action. All other argument values print
the substituent formula beginning with carbon \#21,
represented by ${\rm R^{21}}$ in the diagram,
and the bond to it.
\item[{\rm \ \ \ \ \ \ Argument 9:}] An argument of ``Q''
causes no action. All other argument values print
the second substituent on carbon \#17 and the bond
to it. This substituent is shown in the diagram
as ${\rm R^{17}}$.
\end{description}
\end{document}
|