CCL Home Page
Up Directory CCL cats.o.html
The text file is also avilable here


 torsion constants for angle   1   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   1   2   3  11   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   2   3   7   8   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7   9   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7  10   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   4   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   4   2   3  11   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   5   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   5   2   3  11   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   6   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   6   2   3  11   (type  13 80 30  5) unk; set = 0
 atom #   1 mmtype 13 charge:  0.000
 atom #   2 mmtype 80 charge:  0.600
 atom #   3 mmtype 30 charge:  0.933
 atom #   4 mmtype 13 charge:  0.000
 atom #   5 mmtype 13 charge:  0.000
 atom #   6 mmtype 13 charge:  0.000
 atom #   7 mmtype  1 charge:  0.029
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  5 charge:  0.038
 atom #  12 mmtype  5 charge:  0.000
 atom #  13 mmtype  5 charge:  0.000
 atom #  14 mmtype  5 charge:  0.000
 atom #  15 mmtype  5 charge:  0.000
 atom #  16 mmtype  5 charge:  0.000
 atom #  17 mmtype  5 charge:  0.000
 atom #  18 mmtype  5 charge:  0.000
 atom #  19 mmtype  5 charge:  0.000
 atom #  20 mmtype  5 charge:  0.000
 generalized constants for angle  1  2  3 (type 13 80 30) are used
 generalized constants for angle  1  2  4 (type 13 80 13) are used
 generalized constants for angle  1  2  5 (type 13 80 13) are used
 generalized constants for angle  1  2  6 (type 13 80 13) are used
 generalized constants for angle  3  2  4 (type 30 80 13) are used
 generalized constants for angle  3  2  5 (type 30 80 13) are used
 generalized constants for angle  3  2  6 (type 30 80 13) are used
 generalized constants for angle  4  2  5 (type 13 80 13) are used
 generalized constants for angle  4  2  6 (type 13 80 13) are used
 generalized constants for angle  5  2  6 (type 13 80 13) are used
 generalized constants for angle  2  3  7 (type 80 30  1) are used
 generalized constants for angle  2  3 11 (type 80 30  5) are used
 generalized constants for angle  7  3 11 (type  1 30  5) are used
 generalized constants for angle  3  7  8 (type 30  1  1) are used
 generalized constants for angle  3  7  9 (type 30  1  1) are used
 generalized constants for angle  3  7 10 (type 30  1  1) are used


 MMX Energy   28.24
 STR  23.76 BND   0.44
 S-B   0.02  TOR   0.30
 VDW   3.73  DIP/CHRG   0.00
 Dipole Moment   10.20
 Heat of Formation     16.958 kcal/mole;
 Strain Energy      8.077


 start WBr4CHtBu                                                 
0     * * * * * Energy is minimized within 0.0030 kcal * * * * *

         * * * * * MM2 energy is   -0.3069 kcal/mol * * * * *

               Accumulated movement is 0.2367 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
         3   C-C SP3-SP3                -0.004   -0.012         -49.200
         9   C-H ALIPHATIC              -3.205  -28.845         116.100
         1   H-C+                       86.300   86.300           0.000
                                                       S contrib. above is unk.
         1   C-C+                       56.000   56.000           0.000
                                                       S contrib. above is unk.
         3   C(SP3)-METHYL              -1.510   -4.530
                                    ----------------   ---------------
                                         be =   108.913   s =    66.900
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc         111.006
       Strain Energy (energy+environment corrs.)=           -2.527


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   -0.31
 STR   0.56 BND   0.37
 S-B   0.01  TOR   0.30
 VDW  -1.54  DIP/CHRG   0.00
 Dipole Moment   10.10
 Incomplete heat of formation    111.006 kcal/mole
 end WBr4CHtBu                                                 
 torsion constants for angle   1   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   1   2   3  16   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   1   2   4  11   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   1   2   4  17   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   4  18   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   2   3   7   8   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7   9   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7  10   (type  80 30  1  1) unk; set = 0
 generalized constants for angle   2   4  11  12   (type  80  6  1  1) are used
  0.000  0.000  0.500
 torsion constants for angle   3   2   4  11   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   4  17   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  18   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   4   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   4   2   3  16   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   5   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   5   2   3  16   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   5   2   4  11   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   5   2   4  17   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   5   2   4  18   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   6   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   6   2   3  16   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   6   2   4  11   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   6   2   4  17   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   6   2   4  18   (type  13 80  6 20) unk; set = 0
 atom #   1 mmtype 13 charge:  0.000
 atom #   2 mmtype 80 charge:  0.600
 atom #   3 mmtype 30 charge:  0.933
 atom #   4 mmtype  6 charge:  0.153
 atom #   5 mmtype 13 charge:  0.000
 atom #   6 mmtype 13 charge:  0.000
 atom #   7 mmtype  1 charge:  0.029
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.127
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  5 charge:  0.038
 atom #  17 mmtype 20 charge: -0.140
 atom #  18 mmtype 20 charge: -0.140
 atom #  19 mmtype  5 charge:  0.000
 atom #  20 mmtype  5 charge:  0.000
 atom #  21 mmtype  5 charge:  0.000
 atom #  22 mmtype  5 charge:  0.000
 atom #  23 mmtype  5 charge:  0.000
 atom #  24 mmtype  5 charge:  0.000
 atom #  25 mmtype  5 charge:  0.000
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 generalized constants for angle  1  2  3 (type 13 80 30) are used
 generalized constants for angle  1  2  4 (type 13 80  6) are used
 generalized constants for angle  1  2  5 (type 13 80 13) are used
 generalized constants for angle  1  2  6 (type 13 80 13) are used
 generalized constants for angle  3  2  4 (type 30 80  6) are used
 generalized constants for angle  3  2  5 (type 30 80 13) are used
 generalized constants for angle  3  2  6 (type 30 80 13) are used
 generalized constants for angle  4  2  5 (type  6 80 13) are used
 generalized constants for angle  4  2  6 (type  6 80 13) are used
 generalized constants for angle  5  2  6 (type 13 80 13) are used
 generalized constants for angle  2  3  7 (type 80 30  1) are used
 generalized constants for angle  2  3 16 (type 80 30  5) are used
 generalized constants for angle  7  3 16 (type  1 30  5) are used
 generalized constants for angle  2  4 11 (type 80  6  1) are used
 generalized constants for angle  2  4 17 (type 80  6 20) are used
 generalized constants for angle  2  4 18 (type 80  6 20) are used
 generalized constants for angle  3  7  8 (type 30  1  1) are used
 generalized constants for angle  3  7  9 (type 30  1  1) are used
 generalized constants for angle  3  7 10 (type 30  1  1) are used


 MMX Energy   39.96
 STR  17.12 BND   3.56
 S-B   0.16  TOR  17.39
 VDW   5.29  DIP/CHRG  -3.55
 Dipole Moment    9.32
 Heat of Formation    111.006 kcal/mole;
 Strain Energy     -2.527


 start WBr3(OCH2CME3)CHtBu                                       
0     * * * * * Energy is minimized within 0.0057 kcal * * * * *

         * * * * * MM2 energy is    5.8256 kcal/mol * * * * *

               Accumulated movement is 0.3877 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
         7   C-C SP3-SP3                -0.004   -0.028        -114.800
        20   C-H ALIPHATIC              -3.205  -64.100         258.000
         1   C-O ETHER & ALC.          -16.668  -16.668          -4.000
         1   H-C+                       86.300   86.300           0.000
                                                       S contrib. above is unk.
         1   C-C+                       56.000   56.000           0.000
                                                       S contrib. above is unk.
         1   NEO (ALKANE)               -0.707   -0.707
         6   C(SP3)-METHYL              -1.510   -9.060
                                    ----------------   ---------------
                                         be =    51.737   s =   139.200
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc          59.963
       Strain Energy (energy+environment corrs.)=           -1.244


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy    5.83
 STR   2.05 BND   5.86
 S-B  -0.47  TOR   2.06
 VDW   0.09  DIP/CHRG  -3.76
 Dipole Moment    9.31
 Incomplete heat of formation     59.963 kcal/mole
 end WBr3(OCH2CME3)CHtBu                                       
 torsion constants for angle   1   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   1   2   3  21   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   1   2   4  11   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   1   2   4  22   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   4  23   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   5  16   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   1   2   5  24   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   5  25   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   2   3   7   8   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7   9   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7  10   (type  80 30  1  1) unk; set = 0
 generalized constants for angle   2   4  11  12   (type  80  6  1  1) are used
  0.000  0.000  0.500
 torsion constants for angle   3   2   4  11   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   4  22   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  23   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   5  16   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   5  24   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   5  25   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   4   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   4   2   3  21   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   4   2   5  16   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   5  24   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   5  25   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   5   2   3  21   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   5   2   4  11   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   5   2   4  22   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   4  23   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   6   2   3  21   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   6   2   4  11   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   6   2   4  22   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   6   2   4  23   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   6   2   5  16   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   6   2   5  24   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   6   2   5  25   (type  13 80  6 20) unk; set = 0
 atom #   1 mmtype 13 charge:  0.000
 atom #   2 mmtype 80 charge:  0.600
 atom #   3 mmtype 30 charge:  0.933
 atom #   4 mmtype  6 charge:  0.153
 atom #   5 mmtype  6 charge:  0.153
 atom #   6 mmtype 13 charge:  0.000
 atom #   7 mmtype  1 charge:  0.029
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.127
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.127
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  5 charge:  0.038
 atom #  22 mmtype 20 charge: -0.140
 atom #  23 mmtype 20 charge: -0.140
 atom #  24 mmtype 20 charge: -0.140
 atom #  25 mmtype 20 charge: -0.140
 atom #  26 mmtype  5 charge:  0.000
 atom #  27 mmtype  5 charge:  0.000
 atom #  28 mmtype  5 charge:  0.000
 atom #  29 mmtype  5 charge:  0.000
 atom #  30 mmtype  5 charge:  0.000
 atom #  31 mmtype  5 charge:  0.000
 atom #  32 mmtype  5 charge:  0.000
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 generalized constants for angle  1  2  3 (type 13 80 30) are used
 generalized constants for angle  1  2  4 (type 13 80  6) are used
 generalized constants for angle  1  2  5 (type 13 80  6) are used
 generalized constants for angle  1  2  6 (type 13 80 13) are used
 generalized constants for angle  3  2  4 (type 30 80  6) are used
 generalized constants for angle  3  2  5 (type 30 80  6) are used
 generalized constants for angle  3  2  6 (type 30 80 13) are used
 generalized constants for angle  4  2  5 (type  6 80  6) are used
 generalized constants for angle  4  2  6 (type  6 80 13) are used
 generalized constants for angle  5  2  6 (type  6 80 13) are used
 generalized constants for angle  2  3  7 (type 80 30  1) are used
 generalized constants for angle  2  3 21 (type 80 30  5) are used
 generalized constants for angle  7  3 21 (type  1 30  5) are used
 generalized constants for angle  2  4 11 (type 80  6  1) are used
 generalized constants for angle  2  4 22 (type 80  6 20) are used
 generalized constants for angle  2  4 23 (type 80  6 20) are used
 generalized constants for angle  2  5 16 (type 80  6  1) are used
 generalized constants for angle  2  5 24 (type 80  6 20) are used
 generalized constants for angle  2  5 25 (type 80  6 20) are used
 generalized constants for angle  3  7  8 (type 30  1  1) are used
 generalized constants for angle  3  7  9 (type 30  1  1) are used
 generalized constants for angle  3  7 10 (type 30  1  1) are used


 MMX Energy   50.84
 STR   2.03 BND   4.51
 S-B  -0.20  TOR  50.17
 VDW  -2.01  DIP/CHRG  -3.67
 Dipole Moment   15.92
 Heat of Formation     59.963 kcal/mole;
 Strain Energy     -1.244


 start WBr2(OCH2CME3)2CHtBu                                      
0     * * * * * Energy is minimized within 0.0084 kcal * * * * *

         * * * * * MM2 energy is   20.2924 kcal/mol * * * * *

               Accumulated movement is 0.2760 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
        11   C-C SP3-SP3                -0.004   -0.044        -180.400
        31   C-H ALIPHATIC              -3.205  -99.355         399.900
         2   C-O ETHER & ALC.          -16.668  -33.336          -8.000
         1   H-C+                       86.300   86.300           0.000
                                                       S contrib. above is unk.
         1   C-C+                       56.000   56.000           0.000
                                                       S contrib. above is unk.
         2   NEO (ALKANE)               -0.707   -1.414
         9   C(SP3)-METHYL              -1.510  -13.590
                                    ----------------   ---------------
                                         be =    -5.439   s =   211.500
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc          17.253
       Strain Energy (energy+environment corrs.)=            8.372


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   20.29
 STR   2.46 BND  20.55
 S-B  -0.83  TOR   2.77
 VDW  -0.49  DIP/CHRG  -4.16
 Dipole Moment   14.24
 Incomplete heat of formation     17.253 kcal/mole
 end WBr2(OCH2CME3)2CHtBu                                      
 torsion constants for angle   1   2   3   7   (type  13 80 30  1) unk; set = 0
 torsion constants for angle   1   2   3  26   (type  13 80 30  5) unk; set = 0
 torsion constants for angle   1   2   4  11   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   1   2   4  27   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   4  28   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   5  16   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   1   2   5  29   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   5  30   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   6  21   (type  13 80  6  1) unk; set = 0
 torsion constants for angle   1   2   6  31   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   1   2   6  32   (type  13 80  6 20) unk; set = 0
 torsion constants for angle   2   3   7   8   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7   9   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7  10   (type  80 30  1  1) unk; set = 0
 generalized constants for angle   2   4  11  12   (type  80  6  1  1) are used
  0.000  0.000  0.500
 torsion constants for angle   3   2   4  11   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   4  27   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  28   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   5  16   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   5  29   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   5  30   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   6  21   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   6  31   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   6  32   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   4   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   4   2   3  26   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   4   2   5  16   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   5  29   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   5  30   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   6  21   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   6  31   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   6  32   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   5   2   3  26   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   5   2   4  11   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   5   2   4  27   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   4  28   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   6  21   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   5   2   6  31   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   6  32   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   6   2   3  26   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   6   2   4  11   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   6   2   4  27   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   4  28   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   5  16   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   6   2   5  29   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   5  30   (type   6 80  6 20) unk; set = 0
 atom #   1 mmtype 13 charge:  0.000
 atom #   2 mmtype 80 charge:  0.600
 atom #   3 mmtype 30 charge:  0.933
 atom #   4 mmtype  6 charge:  0.153
 atom #   5 mmtype  6 charge:  0.153
 atom #   6 mmtype  6 charge:  0.153
 atom #   7 mmtype  1 charge:  0.029
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.127
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.127
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  1 charge:  0.127
 atom #  22 mmtype  1 charge:  0.000
 atom #  23 mmtype  1 charge:  0.000
 atom #  24 mmtype  1 charge:  0.000
 atom #  25 mmtype  1 charge:  0.000
 atom #  26 mmtype  5 charge:  0.038
 atom #  27 mmtype 20 charge: -0.140
 atom #  28 mmtype 20 charge: -0.140
 atom #  29 mmtype 20 charge: -0.140
 atom #  30 mmtype 20 charge: -0.140
 atom #  31 mmtype 20 charge: -0.140
 atom #  32 mmtype 20 charge: -0.140
 atom #  33 mmtype  5 charge:  0.000
 atom #  34 mmtype  5 charge:  0.000
 atom #  35 mmtype  5 charge:  0.000
 atom #  36 mmtype  5 charge:  0.000
 atom #  37 mmtype  5 charge:  0.000
 atom #  38 mmtype  5 charge:  0.000
 atom #  39 mmtype  5 charge:  0.000
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 atom #  57 mmtype  5 charge:  0.000
 atom #  58 mmtype  5 charge:  0.000
 atom #  59 mmtype  5 charge:  0.000
 atom #  60 mmtype  5 charge:  0.000
 atom #  61 mmtype  5 charge:  0.000
 atom #  62 mmtype  5 charge:  0.000
 atom #  63 mmtype  5 charge:  0.000
 atom #  64 mmtype  5 charge:  0.000
 atom #  65 mmtype  5 charge:  0.000
 atom #  66 mmtype  5 charge:  0.000
 atom #  67 mmtype  5 charge:  0.000
 atom #  68 mmtype  5 charge:  0.000
 atom #  69 mmtype  5 charge:  0.000
 atom #  70 mmtype  5 charge:  0.000
 atom #  71 mmtype  5 charge:  0.000
 atom #  72 mmtype  5 charge:  0.000
 atom #  73 mmtype  5 charge:  0.000
 atom #  74 mmtype  5 charge:  0.000
 generalized constants for angle  1  2  3 (type 13 80 30) are used
 generalized constants for angle  1  2  4 (type 13 80  6) are used
 generalized constants for angle  1  2  5 (type 13 80  6) are used
 generalized constants for angle  1  2  6 (type 13 80  6) are used
 generalized constants for angle  3  2  4 (type 30 80  6) are used
 generalized constants for angle  3  2  5 (type 30 80  6) are used
 generalized constants for angle  3  2  6 (type 30 80  6) are used
 generalized constants for angle  4  2  5 (type  6 80  6) are used
 generalized constants for angle  4  2  6 (type  6 80  6) are used
 generalized constants for angle  5  2  6 (type  6 80  6) are used
 generalized constants for angle  2  3  7 (type 80 30  1) are used
 generalized constants for angle  2  3 26 (type 80 30  5) are used
 generalized constants for angle  7  3 26 (type  1 30  5) are used
 generalized constants for angle  2  4 11 (type 80  6  1) are used
 generalized constants for angle  2  4 27 (type 80  6 20) are used
 generalized constants for angle  2  4 28 (type 80  6 20) are used
 generalized constants for angle  2  5 16 (type 80  6  1) are used
 generalized constants for angle  2  5 29 (type 80  6 20) are used
 generalized constants for angle  2  5 30 (type 80  6 20) are used
 generalized constants for angle  2  6 21 (type 80  6  1) are used
 generalized constants for angle  2  6 31 (type 80  6 20) are used
 generalized constants for angle  2  6 32 (type 80  6 20) are used
 generalized constants for angle  3  7  8 (type 30  1  1) are used
 generalized constants for angle  3  7  9 (type 30  1  1) are used
 generalized constants for angle  3  7 10 (type 30  1  1) are used


 MMX Energy   29.25
 STR   2.64 BND   5.94
 S-B  -0.96  TOR  31.22
 VDW  -2.33  DIP/CHRG  -7.26
 Dipole Moment   77.99
 Heat of Formation     17.253 kcal/mole;
 Strain Energy      8.372


 start WBr(OCH2tBu)3CHtBu                                        
0     * * * * * Energy is minimized within 0.0111 kcal * * * * *

         * * * * * MM2 energy is    7.3149 kcal/mol * * * * *

               Accumulated movement is 0.1088 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
        15   C-C SP3-SP3                -0.004   -0.060        -246.000
        42   C-H ALIPHATIC              -3.205 -134.610         541.800
         3   C-O ETHER & ALC.          -16.668  -50.004         -12.000
         1   H-C+                       86.300   86.300           0.000
                                                       S contrib. above is unk.
         1   C-C+                       56.000   56.000           0.000
                                                       S contrib. above is unk.
         3   NEO (ALKANE)               -0.707   -2.121
        12   C(SP3)-METHYL              -1.510  -18.120
                                    ----------------   ---------------
                                         be =   -62.615   s =   283.800
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc         -52.900
       Strain Energy (energy+environment corrs.)=           -9.455


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy    7.31
 STR   3.44 BND  11.91
 S-B  -1.56  TOR   3.92
 VDW  -2.90  DIP/CHRG  -7.51
 Dipole Moment   78.23
 Incomplete heat of formation    -52.900 kcal/mole
 end WBr(OCH2tBu)3CHtBu                                        
 torsion constants for angle   1   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   1   2   3  33   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   1   2   4  11   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   1   2   4  34   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   4  35   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   5  16   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   1   2   5  36   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   5  37   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   6  21   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   1   2   6  38   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   6  39   (type   6 80  6 20) unk; set = 0
 generalized constants for angle   2   1  26  27   (type  80  6  1  1) are used
  0.000  0.000  0.500
 torsion constants for angle   2   3   7   8   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7   9   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   2   3   7  10   (type  80 30  1  1) unk; set = 0
 torsion constants for angle   3   2   1  26   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   1  31   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   1  32   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  11   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   4  34   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  35   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   5  16   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   5  36   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   5  37   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   6  21   (type  30 80  6  1) unk; set = 0
 torsion constants for angle   3   2   6  38   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   3   2   6  39   (type  30 80  6 20) unk; set = 0
 torsion constants for angle   4   2   1  26   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   1  31   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   1  32   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   4   2   3  33   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   4   2   5  16   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   5  36   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   5  37   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   6  21   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   6  38   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   6  39   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   1  26   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   5   2   1  31   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   1  32   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   5   2   3  33   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   5   2   4  11   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   5   2   4  34   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   4  35   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   6  21   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   5   2   6  38   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   5   2   6  39   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   1  26   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   6   2   1  31   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   1  32   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   3   7   (type   6 80 30  1) unk; set = 0
 torsion constants for angle   6   2   3  33   (type   6 80 30  5) unk; set = 0
 torsion constants for angle   6   2   4  11   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   6   2   4  34   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   4  35   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   5  16   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   6   2   5  36   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   6   2   5  37   (type   6 80  6 20) unk; set = 0
 atom #   1 mmtype  6 charge:  0.153
 atom #   2 mmtype 80 charge:  0.600
 atom #   3 mmtype 30 charge:  0.933
 atom #   4 mmtype  6 charge:  0.153
 atom #   5 mmtype  6 charge:  0.153
 atom #   6 mmtype  6 charge:  0.153
 atom #   7 mmtype  1 charge:  0.029
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.000
 atom #  11 mmtype  1 charge:  0.127
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.000
 atom #  16 mmtype  1 charge:  0.127
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  1 charge:  0.000
 atom #  21 mmtype  1 charge:  0.127
 atom #  22 mmtype  1 charge:  0.000
 atom #  23 mmtype  1 charge:  0.000
 atom #  24 mmtype  1 charge:  0.000
 atom #  25 mmtype  1 charge:  0.000
 atom #  26 mmtype  1 charge:  0.127
 atom #  27 mmtype  1 charge:  0.000
 atom #  28 mmtype  1 charge:  0.000
 atom #  29 mmtype  1 charge:  0.000
 atom #  30 mmtype  1 charge:  0.000
 atom #  31 mmtype 20 charge: -0.140
 atom #  32 mmtype 20 charge: -0.140
 atom #  33 mmtype  5 charge:  0.038
 atom #  34 mmtype 20 charge: -0.140
 atom #  35 mmtype 20 charge: -0.140
 atom #  36 mmtype 20 charge: -0.140
 atom #  37 mmtype 20 charge: -0.140
 atom #  38 mmtype 20 charge: -0.140
 atom #  39 mmtype 20 charge: -0.140
 atom #  40 mmtype  5 charge:  0.000
 atom #  41 mmtype  5 charge:  0.000
 atom #  42 mmtype  5 charge:  0.000
 atom #  43 mmtype  5 charge:  0.000
 atom #  44 mmtype  5 charge:  0.000
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 atom #  57 mmtype  5 charge:  0.000
 atom #  58 mmtype  5 charge:  0.000
 atom #  59 mmtype  5 charge:  0.000
 atom #  60 mmtype  5 charge:  0.000
 atom #  61 mmtype  5 charge:  0.000
 atom #  62 mmtype  5 charge:  0.000
 atom #  63 mmtype  5 charge:  0.000
 atom #  64 mmtype  5 charge:  0.000
 atom #  65 mmtype  5 charge:  0.000
 atom #  66 mmtype  5 charge:  0.000
 atom #  67 mmtype  5 charge:  0.000
 atom #  68 mmtype  5 charge:  0.000
 atom #  69 mmtype  5 charge:  0.000
 atom #  70 mmtype  5 charge:  0.000
 atom #  71 mmtype  5 charge:  0.000
 atom #  72 mmtype  5 charge:  0.000
 atom #  73 mmtype  5 charge:  0.000
 atom #  74 mmtype  5 charge:  0.000
 atom #  75 mmtype  5 charge:  0.000
 atom #  76 mmtype  5 charge:  0.000
 atom #  77 mmtype  5 charge:  0.000
 atom #  78 mmtype  5 charge:  0.000
 atom #  79 mmtype  5 charge:  0.000
 atom #  80 mmtype  5 charge:  0.000
 atom #  81 mmtype  5 charge:  0.000
 atom #  82 mmtype  5 charge:  0.000
 atom #  83 mmtype  5 charge:  0.000
 atom #  84 mmtype  5 charge:  0.000
 atom #  85 mmtype  5 charge:  0.000
 atom #  86 mmtype  5 charge:  0.000
 atom #  87 mmtype  5 charge:  0.000
 atom #  88 mmtype  5 charge:  0.000
 atom #  89 mmtype  5 charge:  0.000
 atom #  90 mmtype  5 charge:  0.000
 atom #  91 mmtype  5 charge:  0.000
 atom #  92 mmtype  5 charge:  0.000
 generalized constants for angle  2  1 26 (type 80  6  1) are used
 generalized constants for angle  2  1 31 (type 80  6 20) are used
 generalized constants for angle  2  1 32 (type 80  6 20) are used
 generalized constants for angle  1  2  3 (type  6 80 30) are used
 generalized constants for angle  1  2  4 (type  6 80  6) are used
 generalized constants for angle  1  2  5 (type  6 80  6) are used
 generalized constants for angle  1  2  6 (type  6 80  6) are used
 generalized constants for angle  3  2  4 (type 30 80  6) are used
 generalized constants for angle  3  2  5 (type 30 80  6) are used
 generalized constants for angle  3  2  6 (type 30 80  6) are used
 generalized constants for angle  4  2  5 (type  6 80  6) are used
 generalized constants for angle  4  2  6 (type  6 80  6) are used
 generalized constants for angle  5  2  6 (type  6 80  6) are used
 generalized constants for angle  2  3  7 (type 80 30  1) are used
 generalized constants for angle  2  3 33 (type 80 30  5) are used
 generalized constants for angle  7  3 33 (type  1 30  5) are used
 generalized constants for angle  2  4 11 (type 80  6  1) are used
 generalized constants for angle  2  4 34 (type 80  6 20) are used
 generalized constants for angle  2  4 35 (type 80  6 20) are used
 generalized constants for angle  2  5 16 (type 80  6  1) are used
 generalized constants for angle  2  5 36 (type 80  6 20) are used
 generalized constants for angle  2  5 37 (type 80  6 20) are used
 generalized constants for angle  2  6 21 (type 80  6  1) are used
 generalized constants for angle  2  6 38 (type 80  6 20) are used
 generalized constants for angle  2  6 39 (type 80  6 20) are used
 generalized constants for angle  3  7  8 (type 30  1  1) are used
 generalized constants for angle  3  7  9 (type 30  1  1) are used
 generalized constants for angle  3  7 10 (type 30  1  1) are used


 MMX Energy   12.99
 STR   4.66 BND  15.66
 S-B  -1.84  TOR   5.38
 VDW  -1.12  DIP/CHRG  -9.74
 Dipole Moment   78.42
 Heat of Formation    -52.900 kcal/mole;
 Strain Energy     -9.455


 start W(OCH2tBu)4CHtBu                                          
0     * * * * * Energy is minimized within 0.0138 kcal * * * * *

         * * * * * MM2 energy is   10.1920 kcal/mol * * * * *

               Accumulated movement is 0.1447 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  5-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  6-  2 does not have programmed enthalpy increments. 
        19   C-C SP3-SP3                -0.004   -0.076        -311.600
        53   C-H ALIPHATIC              -3.205 -169.865         683.700
         4   C-O ETHER & ALC.          -16.668  -66.672         -16.000
         1   H-C+                       86.300   86.300           0.000
                                                       S contrib. above is unk.
         1   C-C+                       56.000   56.000           0.000
                                                       S contrib. above is unk.
         4   NEO (ALKANE)               -0.707   -2.828
        15   C(SP3)-METHYL              -1.510  -22.650
                                    ----------------   ---------------
                                         be =  -119.791   s =   356.100
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -107.199
       Strain Energy (energy+environment corrs.)=          -11.428


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.


 MMX Energy   10.19
 STR   4.46 BND  15.66
 S-B  -1.80  TOR   5.27
 VDW  -1.97  DIP/CHRG -11.44
 Dipole Moment   78.81
 Incomplete heat of formation   -107.199 kcal/mole
 end W(OCH2tBu)4CHtBu                                          
 torsion constants for angle   1   2   3   5   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   1   2   3  41   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   3  42   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   4  10   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   1   2   4  43   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2   4  44   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   1   2  21  20   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   1   2  21  22   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   1   2  21  23   (type   6 80 80  6) unk; set = 0
 generalized constants for angle   2   1  15  16   (type  80  6  1  1) are used
  0.000  0.000  0.500
 torsion constants for angle   2  21  20  34   (type  80 80  6  1) unk; set = 0
 torsion constants for angle   2  21  20  78   (type  80 80  6 20) unk; set = 0
 torsion constants for angle   2  21  20  79   (type  80 80  6 20) unk; set = 0
 torsion constants for angle   2  21  22  24   (type  80 80  6  1) unk; set = 0
 torsion constants for angle   2  21  22  80   (type  80 80  6 20) unk; set = 0
 torsion constants for angle   2  21  22  81   (type  80 80  6 20) unk; set = 0
 torsion constants for angle   2  21  23  29   (type  80 80  6  1) unk; set = 0
 torsion constants for angle   2  21  23  82   (type  80 80  6 20) unk; set = 0
 torsion constants for angle   2  21  23  83   (type  80 80  6 20) unk; set = 0
 torsion constants for angle   3   2   1  15   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   3   2   1  39   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   3   2   1  40   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  10   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   3   2   4  43   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   3   2   4  44   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   3   2  21  20   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   3   2  21  22   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   3   2  21  23   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   4   2   1  15   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   1  39   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   1  40   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   3   5   (type   6 80  6  1) unk; set = 0
 torsion constants for angle   4   2   3  41   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2   3  42   (type   6 80  6 20) unk; set = 0
 torsion constants for angle   4   2  21  20   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   4   2  21  22   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   4   2  21  23   (type   6 80 80  6) unk; set = 0
 torsion constants for angle   5   3   2  21   (type   1  6 80 80) unk; set = 0
 torsion constants for angle  10   4   2  21   (type   1  6 80 80) unk; set = 0
 torsion constants for angle  15   1   2  21   (type   1  6 80 80) unk; set = 0
 torsion constants for angle  20  21  22  24   (type   6 80  6  1) unk; set = 0
 torsion constants for angle  20  21  22  80   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  20  21  22  81   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  20  21  23  29   (type   6 80  6  1) unk; set = 0
 torsion constants for angle  20  21  23  82   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  20  21  23  83   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  21   2   1  39   (type  80 80  6 20) unk; set = 0
 torsion constants for angle  21   2   1  40   (type  80 80  6 20) unk; set = 0
 torsion constants for angle  21   2   3  41   (type  80 80  6 20) unk; set = 0
 torsion constants for angle  21   2   3  42   (type  80 80  6 20) unk; set = 0
 torsion constants for angle  21   2   4  43   (type  80 80  6 20) unk; set = 0
 torsion constants for angle  21   2   4  44   (type  80 80  6 20) unk; set = 0
 torsion constants for angle  22  21  20  34   (type   6 80  6  1) unk; set = 0
 torsion constants for angle  22  21  20  78   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  22  21  20  79   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  22  21  23  29   (type   6 80  6  1) unk; set = 0
 torsion constants for angle  22  21  23  82   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  22  21  23  83   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  23  21  20  34   (type   6 80  6  1) unk; set = 0
 torsion constants for angle  23  21  20  78   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  23  21  20  79   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  23  21  22  24   (type   6 80  6  1) unk; set = 0
 torsion constants for angle  23  21  22  80   (type   6 80  6 20) unk; set = 0
 torsion constants for angle  23  21  22  81   (type   6 80  6 20) unk; set = 0
 atom #   1 mmtype  6 charge:  0.153
 atom #   2 mmtype 80 charge:  0.600
 atom #   3 mmtype  6 charge:  0.153
 atom #   4 mmtype  6 charge:  0.153
 atom #   5 mmtype  1 charge:  0.127
 atom #   6 mmtype  1 charge:  0.000
 atom #   7 mmtype  1 charge:  0.000
 atom #   8 mmtype  1 charge:  0.000
 atom #   9 mmtype  1 charge:  0.000
 atom #  10 mmtype  1 charge:  0.127
 atom #  11 mmtype  1 charge:  0.000
 atom #  12 mmtype  1 charge:  0.000
 atom #  13 mmtype  1 charge:  0.000
 atom #  14 mmtype  1 charge:  0.000
 atom #  15 mmtype  1 charge:  0.127
 atom #  16 mmtype  1 charge:  0.000
 atom #  17 mmtype  1 charge:  0.000
 atom #  18 mmtype  1 charge:  0.000
 atom #  19 mmtype  1 charge:  0.000
 atom #  20 mmtype  6 charge:  0.153
 atom #  21 mmtype 80 charge:  0.127
 atom #  22 mmtype  6 charge:  0.153
 atom #  23 mmtype  6 charge:  0.153
 atom #  24 mmtype  1 charge:  0.127
 atom #  25 mmtype  1 charge:  0.000
 atom #  26 mmtype  1 charge:  0.000
 atom #  27 mmtype  1 charge:  0.000
 atom #  28 mmtype  1 charge:  0.000
 atom #  29 mmtype  1 charge:  0.127
 atom #  30 mmtype  1 charge:  0.000
 atom #  31 mmtype  1 charge:  0.000
 atom #  32 mmtype  1 charge:  0.000
 atom #  33 mmtype  1 charge:  0.000
 atom #  34 mmtype  1 charge:  0.127
 atom #  35 mmtype  1 charge:  0.000
 atom #  36 mmtype  1 charge:  0.000
 atom #  37 mmtype  1 charge:  0.000
 atom #  38 mmtype  1 charge:  0.000
 atom #  39 mmtype 20 charge: -0.140
 atom #  40 mmtype 20 charge: -0.140
 atom #  41 mmtype 20 charge: -0.140
 atom #  42 mmtype 20 charge: -0.140
 atom #  43 mmtype 20 charge: -0.140
 atom #  44 mmtype 20 charge: -0.140
 atom #  45 mmtype  5 charge:  0.000
 atom #  46 mmtype  5 charge:  0.000
 atom #  47 mmtype  5 charge:  0.000
 atom #  48 mmtype  5 charge:  0.000
 atom #  49 mmtype  5 charge:  0.000
 atom #  50 mmtype  5 charge:  0.000
 atom #  51 mmtype  5 charge:  0.000
 atom #  52 mmtype  5 charge:  0.000
 atom #  53 mmtype  5 charge:  0.000
 atom #  54 mmtype  5 charge:  0.000
 atom #  55 mmtype  5 charge:  0.000
 atom #  56 mmtype  5 charge:  0.000
 atom #  57 mmtype  5 charge:  0.000
 atom #  58 mmtype  5 charge:  0.000
 atom #  59 mmtype  5 charge:  0.000
 atom #  60 mmtype  5 charge:  0.000
 atom #  61 mmtype  5 charge:  0.000
 atom #  62 mmtype  5 charge:  0.000
 atom #  63 mmtype  5 charge:  0.000
 atom #  64 mmtype  5 charge:  0.000
 atom #  65 mmtype  5 charge:  0.000
 atom #  66 mmtype  5 charge:  0.000
 atom #  67 mmtype  5 charge:  0.000
 atom #  68 mmtype  5 charge:  0.000
 atom #  69 mmtype  5 charge:  0.000
 atom #  70 mmtype  5 charge:  0.000
 atom #  71 mmtype  5 charge:  0.000
 atom #  72 mmtype  5 charge:  0.000
 atom #  73 mmtype  5 charge:  0.000
 atom #  74 mmtype  5 charge:  0.000
 atom #  75 mmtype  5 charge:  0.000
 atom #  76 mmtype  5 charge:  0.000
 atom #  77 mmtype  5 charge:  0.000
 atom #  78 mmtype 20 charge: -0.140
 atom #  79 mmtype 20 charge: -0.140
 atom #  80 mmtype 20 charge: -0.140
 atom #  81 mmtype 20 charge: -0.140
 atom #  82 mmtype 20 charge: -0.140
 atom #  83 mmtype 20 charge: -0.140
 atom #  84 mmtype  5 charge:  0.000
 atom #  85 mmtype  5 charge:  0.000
 atom #  86 mmtype  5 charge:  0.000
 atom #  87 mmtype  5 charge:  0.000
 atom #  88 mmtype  5 charge:  0.000
 atom #  89 mmtype  5 charge:  0.000
 atom #  90 mmtype  5 charge:  0.000
 atom #  91 mmtype  5 charge:  0.000
 atom #  92 mmtype  5 charge:  0.000
 atom #  93 mmtype  5 charge:  0.000
 atom #  94 mmtype  5 charge:  0.000
 atom #  95 mmtype  5 charge:  0.000
 atom #  96 mmtype  5 charge:  0.000
 atom #  97 mmtype  5 charge:  0.000
 atom #  98 mmtype  5 charge:  0.000
 atom #  99 mmtype  5 charge:  0.000
 atom # 100 mmtype  5 charge:  0.000
 atom # 101 mmtype  5 charge:  0.000
 atom # 102 mmtype  5 charge:  0.000
 atom # 103 mmtype  5 charge:  0.000
 atom # 104 mmtype  5 charge:  0.000
 atom # 105 mmtype  5 charge:  0.000
 atom # 106 mmtype  5 charge:  0.000
 atom # 107 mmtype  5 charge:  0.000
 atom # 108 mmtype  5 charge:  0.000
 atom # 109 mmtype  5 charge:  0.000
 atom # 110 mmtype  5 charge:  0.000
 atom # 111 mmtype  5 charge:  0.000
 atom # 112 mmtype  5 charge:  0.000
 atom # 113 mmtype  5 charge:  0.000
 atom # 114 mmtype  5 charge:  0.000
 atom # 115 mmtype  5 charge:  0.000
 atom # 116 mmtype  5 charge:  0.000
 generalized constants for angle  2  1 15 (type 80  6  1) are used
 generalized constants for angle  2  1 39 (type 80  6 20) are used
 generalized constants for angle  2  1 40 (type 80  6 20) are used
 generalized constants for angle  1  2  3 (type  6 80  6) are used
 generalized constants for angle  1  2  4 (type  6 80  6) are used
 generalized constants for angle  1  2 21 (type  6 80 80) are used
 generalized constants for angle  3  2  4 (type  6 80  6) are used
 generalized constants for angle  3  2 21 (type  6 80 80) are used
 generalized constants for angle  4  2 21 (type  6 80 80) are used
 generalized constants for angle  2  3  5 (type 80  6  1) are used
 generalized constants for angle  2  3 41 (type 80  6 20) are used
 generalized constants for angle  2  3 42 (type 80  6 20) are used
 generalized constants for angle  2  4 10 (type 80  6  1) are used
 generalized constants for angle  2  4 43 (type 80  6 20) are used
 generalized constants for angle  2  4 44 (type 80  6 20) are used
 generalized constants for angle 21 20 34 (type 80  6  1) are used
 generalized constants for angle 21 20 78 (type 80  6 20) are used
 generalized constants for angle 21 20 79 (type 80  6 20) are used
 generalized constants for angle 20 21 22 (type  6 80  6) are used
 generalized constants for angle 20 21 23 (type  6 80  6) are used
 generalized constants for angle  2 21 20 (type 80 80  6) are used
 generalized constants for angle 22 21 23 (type  6 80  6) are used
 generalized constants for angle  2 21 22 (type 80 80  6) are used
 generalized constants for angle  2 21 23 (type 80 80  6) are used
 generalized constants for angle 21 22 24 (type 80  6  1) are used
 generalized constants for angle 21 22 80 (type 80  6 20) are used
 generalized constants for angle 21 22 81 (type 80  6 20) are used
 generalized constants for angle 21 23 29 (type 80  6  1) are used
 generalized constants for angle 21 23 82 (type 80  6 20) are used
 generalized constants for angle 21 23 83 (type 80  6 20) are used


 MMX Energy   98.77
 STR   5.43 BND  34.70
 S-B  -1.39  TOR  69.74
 VDW  -5.14  DIP/CHRG  -4.57
 Dipole Moment   44.57
 Heat of Formation   -107.199 kcal/mole;
 Strain Energy    -11.428


 start Chisholm complexes                                        
0     * * * * * Energy is minimized within 0.0174 kcal * * * * *

         * * * * * MM2 energy is   49.6699 kcal/mol * * * * *

               Accumulated movement is 0.1417 ang/atom


       ------------------------------------------------------------
       Heat of Formation, Strain Energies and Entropies at 300 k
        (units are kcal or eu.)
       Bond Enthalpy (be) and Entropy:
         #   Bond or Structure          Each    Total     Tot S contrib.
 * * * * * error - bond  2-  1 does not have programmed enthalpy increments. 
 * * * * * error - bond  3-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond  4-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 21- 20 does not have programmed enthalpy increments. 
 * * * * * error - bond 21-  2 does not have programmed enthalpy increments. 
 * * * * * error - bond 22- 21 does not have programmed enthalpy increments. 
 * * * * * error - bond 23- 21 does not have programmed enthalpy increments. 
        24   C-C SP3-SP3                -0.004   -0.096        -393.600
        66   C-H ALIPHATIC              -3.205 -211.530         851.400
         6   C-O ETHER & ALC.          -16.668 -100.008         -24.000
         6   NEO (ALKANE)               -0.707   -4.242
        18   C(SP3)-METHYL              -1.510  -27.180
                                    ----------------   ---------------
                                         be =  -343.056   s =   433.800
 3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
 for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
 for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
 there are no symmetry corrections to the entropy.


 Heat of Formation calculation:
       Partition Function Contribution (PFC)
          Conformational Population Increment (POP)  0.000
          Torsional Contribution (TOR)               0.000
          Translation/Rotation Term (T/R)            2.400
                                             -------------
                                              PFC =  2.400

       Heat of Formation (hf0) = energy + be + pfc        -291.125
       Strain Energy (energy+environment corrs.)=           20.431


 CAUTION, delta hf is not correct because of missing parameters.

  Use total energy or strain energy to compare the stabilities of conformers
  and diastereomers.  Caution, energy parameters for metal systems are
  generalized and may not represent a particular metal or oxidation state.
  Use heats of formation to compare stabilities of structural isomers like
  acetaldehyde and enol or allyl chloride and cyclopropyl chloride.  Many
  bond contributions to the heat of formation are unknown-these contribute
  0.0 to the value given.
    Poor convergence


 MMX Energy   49.53
 STR   6.66 BND  46.85
 S-B  -2.66  TOR   9.08
 VDW  -5.57  DIP/CHRG  -4.81
 Dipole Moment   44.32
 Incomplete heat of formation   -291.125 kcal/mole
 end Chisholm complexes                                        


 MMX Energy   49.53
 STR   6.66 BND  46.85
 S-B  -2.66  TOR   9.08
 VDW  -5.57  DIP/CHRG  -4.81
 Dipole Moment   44.32
 Incomplete heat of formation   -291.125 kcal/mole
 end Chisholm complexes                                        

back to up page
Modified: Tue Sep 22 14:08:35 1998 GMT
Page accessed 1530 times since Fri May 28 20:49:48 2010 GMT