|
Molecular Modeling Methods
Methods: Parameters & Basis Sets
(Accuracy: ΔHf°, ΔHr, ΔH kcal/mole;
D Debye; IP eV; l Å; a,d °; v cm-1)
Method Groupings
- Molecular Mechanics, Allinger Force Field version 2
Basis:
XRD & ND Structures
75 parameters
3rd Order Dihedral term
bond dipoles vs electrostatic
Pros:
covalent
organic
Ground States
Cons:
metal bonding
excited states
transition states
Atoms:
H, D
B - F
Si - Cl
Ca, Cr, Co, Cu - Br
Sr, Rh, Pd, Cd, Sn, Te, I
Pb
Accy:
ΔHf°±0.5, ΔHr±0.4, ΔH±2
D±0.1
l±0.01, a±1, d±8
v±80
MM3 -
Basis: added 4th order dihedral
Atoms:
H
Li, C - O
Na, Mg, P, S
K, Ca
Rb, Sr, I
Cs, Ba
Pros:
accuracy
cyclohexylamine conformation
entropy by vibrational analysis
F-C-C-F hyperconjugation
anomeric effect
Bohlmann effect
Accy:
ΔHf°±0.6, ΔHr±0.4, ΔH±1
D±0.07
l±0.01, a±1, d±5
v±40
ChemX -
Basis:
organics
inorganics
peptides
Accy: ΔHr±1, ΔH±2
Basis:
biomolecules
atomic
general purpose
harmonic force field
Pros:
biomolecules
saturated HCs
Cons:
inorganics
unsaturations
nonbond attractions high
2-Cl-THP eq. (no anomeric)
Accy: ΔHr±1, ΔH±1
-
Basis:
biomolecules
harmonic force field
25 parameters
united atom charges from HF 6-31G*
(CH as united atom in old version)
electrostatic ("disappearing" L-J) H-bond
Pros:
proteins/DNA
aqueous
Cons:
inorganic
no general atom types
Atoms:
H
C - F
Na, Mg, P - Cl
K, Ca, Fe, Cu, Br
Rb, I
Cs
Accy: ΔHr±0.7
-
Basis:
18 parameter force field
(CH as united atom in old version)
Pros:
biopolymers
QM-MD
GAMESS or AMPAC QM
Atoms:
H
C - O
Na - S
K - Fe
Rb
Eu
Accy:
ΔH±0.9
l±0.01, a±1
OPLS - Optimized Potentials for Liquid Simulation
Basis:
electrostatic ("disappearing" L-J) H-bond
protein/DNA
liquids, solutions
ab initio calc'ns on 100 organics
CH as united atom
Pros: condensed phase
Model -
Atoms:
H
Li, Be, O
Na - Si, Cl
K - Ni, Zn, Ge, Br
Rb - Nb, Cd, Sn, I
Cs- La, Nd, Eu-Tb, Ho, Yb-Hf
Pu
Dreiding -
Basis:
Bonds from atomic radii
angles from hydrides
harmonic force field
Pros: General organic & main group
Cons:
Accuracy
nonphysical charges
2-MeO-THP equilibrium
Atoms:
H
B - F
Na, Al - Cl
Ca, Fe, Zn - Br
In - I
Accy:
ΔH±2, ΔHr±1
l±0.03, a±3, d±8
UFF - Universal Force Field
Basis:
Organic
Inorganic
parms calcd from basic props
Pros: full periodic table
Cons:
needs charge equilibration
2-MeO -THP equatorial
Acc'y: ΔHr±0.9
- Consistent Force Field
Basis:
Class II Force Field
based on ab initio/QM data
nondiagonal force field
crossterms
generalized parameters
Atoms:
H
C-F
Na, Si-S, Ar
Ca, Br
I
Cons:
2-MeO-THP equatorial
nonbond anomaly expands condensed phase
Accy:
ΔHr±0.5, ΔH±0.8
l±0.01, a±1
solubility parameter±0.2
sorption energy±5
PCFF -
Basis:
derived from CFF, QM based FF
optimized for polymer properties
COMPASS - Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies
Basis:
derived from CFF, QM based FF
optimized for condensed phase MD
ESP from 6-31G*
integral for cutoff tail sums
6-9 L-J term
Pros:
long range/nonbonded interaction
condensed phase properties
Accy:
ΔHr±0.4
a±1.8
Xtal densities +6%
-
Basis:
general purpose
Morse function stretch term
nondiagonal force field
crossterms
empirical parametrization
Cons: anomeric effect w/ 2-MeOTHP
Acc'y: ΔHr±1
Basis:
diagonal valence
rule based:
electronegativity
atomic radii
hardness
scaling
d-p π bonding
organics, inorganic, organometallic & biomolecules
Pros:
any element
organometallic complexes
Cons: accuracy
Atoms:
H
Li - F
Na - Cl
K - Br
Rb - I
Cs - At
MMFF94 Merck Molecular Force Field
Basis:
small molecule
ab initio & experimental
Pros: ions
(1-Electron MO Methods)
-
Basis:
"Tight Binding Approximation"
π-orbitals only
Hµµ= alpha
Hµv = beta, adjacent atoms only
Sµv = 0
Pros:
orbital symmetry
resonance energy
back of envelope
Cons:
flat, π orbitals only
polars poor
EHT -
Basis:
valence s & ps
Hµµ= -IPµ (ionization potential)
Hµv = 1.75(IPµ + IPv)Sµv
Sµv computed
Pros:
C2H6 rotational barrier
Woodward-Hoffman rules
includes AO overlap terms
Fock matrix diagonalized once
Frontier orbitals
Walsh Diagrams
All elements
Cons:
valence only
geometry poor
partial charges high
singlet & triplet same (no e- spin)
no e-/e- or nuclear repulsions
IEHT -
Basis:
Iterate to consistent charge
Hµµ= -IPµ - Qa(IPa-EAa)
Pros:
reasonable, but low charges
better dipoles
better orbital order
Cons:
valence only
convergence poor
benzene asymmetric
Fenske-Hall -
Basis:
parameter free
minimal basis
all electron
spectroscopic Slater terms
(2-Electron MO Methods)
- Complete Neglect of Differential Overlap
Basis:
all 2 e- overlap Orbitals
IP & EA
XµXvdt = 0
Hµv ° ßabSµv fit to minimum basis set
Pros:
bond lengths
bond angles
Cons: dissociation energies poor
Accy: ΔHf°±200
-
Basis:
one 2pπ STO per conjugation
single CI
valence π & sigma separate
Pros: aromatic species
Cons:
valence only
ignores many e-/e- repulsions
INDO/1 -
Basis:
minimal basis set
valence s, p, & d orbitals
2-center integrals 0
includes 1-center exchange integrals
Hµµ= -(IPµ - EAµ/2 + . . .
Hµv from STO-3G SCF
Pros:
transition metals
bond lengths
bond angles
singlet-triplet splitting
better electron spin
SCRF
Cons:
small rings favored
dye absorbances low
no double excitations
dissociation energies poor
no SCRF for spectra
Atoms:
H
Li - F
Na - Cl
K - Zn
Y - Cd
Accy:
ΔHf°±100
l±0.08
INDO/S -
Basis:
parameterized for spectra
single CI
Pros: UV spectra
Cons: metals w/ unpaired e-
Atoms:
Li, B - F
P, S
Sc - Zn
(2 Electron NDDO Methods)
-
Basis:
32 molecule parameterization
1-center integral parameters
3 & 4-center integrals on same
resonance integral from exp.
Pros:
carbocations
amides flat
Cons:
valence s & p only
small rings favored
resonance energy low
no H-bonds
lone pair repulsion low
rings flat
transition states poor
Atoms:
H
B - F
Si - Cl
Accy:
ΔHf°±5, ΔHr±13
D±0.5, IP±0.7
l±0.02
MNDO - Minimal Neglect of Differential Overlap
Basis: 32 molecule parameterization
Pros:
multiple bonds
EAs for ions
better lone pair repulsion
better angles
Cons:
valence s & p only
no H-bonds, no H2O dimer
spurious H-H interaction
S, Cl, & Br IP high
activation barriers high
bond dissociation enthalpies low
conjugation low
3-center B bonds low
-O-O- bond ~ 0.17Å short
C-O-C angle 9° large
Ar-NO2 out of plane
amides pyramidal
no Van der Waals attraction
steric crowding disfavored:
neopentane unstable
4-membered rings too stable
hypervalent unstable
Atoms:
H
Li - F
Al - Cl
Cr, Zn, Ge, Br
Sn, I
Hg, Pb
Accy:
ΔHf°±11, ΔHr±13, ΔHdiss-20, ΔH±16
D±0.5, IP±0.8
l±0.07, a±5, d±17
v+11%
MNDO/d -
Basis:
adding d-orbitals to MNDO
split valence
11 parameters for sp elements
15 parameter for spd elements
d orbitals for 2nd row main group
Atoms:
Na - Cl
Ti, Fe, Ni, Cu, Zn, Ge - Br
Zr, Pd, Ag, Cd, Sn - I
Hf, Hg
Pros:
Heat of formation
hypervalent shape
Cons:
IP
dipole moment
overpredicts agostic interaction
metal-ethylene short
no insertion barrier
Accy:
ΔHf°±6
D±0.5, IP±0.6
l±0.06, a±2
AM1 - Austin Model 1
Basis:
100 molecule parameterization
1-center from spectroscopy
minimal basis set
Gaussian patches
7-21 parameters per element
theoretical consistency
Pros:
H-bond energies
H-bond lengths
proton affinities
better activation barriers
hypervalent P
Heat of Formation 40% better
2-Cl-THP axial (anomeric)
Cons:
valence s & p only
no hypervalent compounds
P orbitals irregular @ 3Å:
P4O6 asymmetric
P-O bonds
conjugate interactions low
-CH2- ΔHf ~ 2 kcal low each
Heat of Hydrogenation low
bond dissociation enthalpies low
activation enthalpies high
-NO2 energies high
-O-O- bond ~ 0.17Å short
H-bond angles, H2O H-bond geometry wrong
C-C-O-H gauche in ethanol
H+ transfer barrier high
acrolein, glyoxal
Atoms:
H
Li, B - F
Al - Cl
Zn, Ge, Br
I
Hg
Accy:
ΔHf°±8, ΔHr±5, ΔHdiss-20, ΔH±7
D±0.5 ,IP±0.6
l±0.06, a±4, d±13
v+4.7%
SAM1 -
Basis: AM1 w/ d-orbitals
Pros:
theoretical consistency
transition metals
Atoms:
H
C - F
Si - Cl
Fe, Cu, Br
I
Accy:
ΔHf°±8, ΔHr±5
D±0.4, IP±0.4
l±0.04, a±3
v±13%
PM3 -
Basis:
657 molecule parameterization
minimal basis set
18 parameters per element
2 Gaussians for each element
all 2 e- integral parameters optimized
Pros:
hypervalent included
HOF 40% better
-NO2 better
ground state geometries better
reproducing experimental data
H2O H-bonds: lengths & angles
Cons:
partial charges on N unreliable
bond dissociation enthalpies low
amides pyramidal, barrier low
no barrier to formamide rotation
spurious minima
D2d symmetry for CBr4
CH4 LUMO symmetry A1
IPs poor
Proton Affinity
H+ transfer barrier high
wrong glucose geometry:
H-bonds 0.1Å short
C-C-O-H gauche in ethanol
VdW attraction high/H-H core repulsion low, H-H 1.7 vs 2.0 Å
Atoms:
H
Li, Be, C - F
Mg - Cl
Zn - Br
Cd - I
Hg - Bi
Accy:
ΔHf°±9, ΔHr±7, ΔHdiss-20, ΔH±9
D±0.6, IP±0.7
l±0.05, a±9, d±15
v±20%
PM3(tm) -
Basis:
PM3 with d-orbitals
minimal basis set
optimized for geometries
Pros:
transition metals
geometries
Cons: energies
Atoms:
H
Li - F
Mg - Cl
Ca, Ti, Cr - Br
Zr, Mo, Ru - Pd, Cd - I
Hf - W, Hg
Gd
Basis: Kohn-Sham theory
Pros:
static correlation included
less basis set sensitivity
less spin contamination
Cons:
no dynamic correlation
quasiparticle functions, not true MOs
overstabilizes low spin state of metal complexes
Basis:
Local Spin Density/functionals
Slater style exchange
alpha ~ 0.7
Pros:
geometries
EA's
Cons:
no dynamic correlation: VdW/dispersion
H-bonds
N2 orbital order
bond energies high
IP's low
bandgap low
delocalized 3e- bonds too stable
exchange functional only
Acc'y:
l±0.02, a±3
v±35
SVWN -
Basis:
Local Spin Density functionals
Slater exchange
Vosko-Wilk-Nusair correlation
Pros:
scales as big x n^2
no parameters
Cons:
bonds short
bond energies high
proton affinities
H-bonds
H-abstractions poor
radical Rxn barriers low
long range dispersion
band gap low
spurious e- self interaction
overstablizes lo spin states of metal complexes
Accy:
ΔHf+90, ΔHr±9, ΔHdiss+16, ΔHatom+80, ΔH±7
D±0.1
l±0.02, a±2
v±7%
LYP
Basis:
Lee-Yang-Parr gradient correction
correlation functional from He atom
Cons:
charge transfer complexes
excited states
1 e- correlation 0
nonuniform e- gas limit
parallel = opposite spin e- pairs
P86
Basis:
Perdew gradient correction
correlation functional
parameter free
Pros:
uniform e- gas limit
parallel opposite spin pairs
Cons: 1 e- correlation 0
Basis:
Becke gradient correction
exchange functional
1 parameter fitted to calculated atomic data
Pros:
1 e- correlation =0
parallel opposite spin pairs
Cons:
nonuniform e- gas limit
inhomogeneity limits interpolation
BP - Becke-Perdew
Basis:
nonlocal/Generalized Gradient Approximation method
B88 exchange w/ P86 correlation
scales as n^3
Pros:
transition metals
better metal spin state preference
Cons: overstablizes high spin state of metal complexes
Acc'y:
ΔHf+16, ΔHr±5, ΔHdiss+5, ΔHatom+20
D±0.2
l±0.02, a±0.9
BLYP - Becke Lee-Yang-Parr
Basis:
nonlocal/Generalized Gradient Approximation method
B88 exchange w/ LYP correlation
scales as n^3
Pros:
heavy atom BDE's
IR scaling
better metal spin state preference
Cons:
popular, well tested/validated
overstablizes high spin state of metal complexes
transition states for: F + H2, N + O2, O + HCl
Acc'y:
ΔHf±7, ΔHr±5, ΔHdiss±5, ΔHatom±9, ΔH±6
D±0.2
l+0.03, a±1
v±6%
GGA91
Pros:
parallel opposite spin pairs
uniform e- gas limit
no fit parameters
H-bonds
Cons: 1 e- correlation 0
- ACM Adiabatic Correction Method
Basis:
nonlocal gradient corrections
hybrid HF exchange for part of DFT
Pros:
transition states
H-bonds
-
Basis:
hybrid nonlocal method
3-parameter exchange fitted to G2 thermochemistry data:
Becke exchange
HF exchange
LYP correlation
favors greater density
favors greater inhomogeneity
Pros:
good rxn barriers
nondynamic correlation
radical hyperfine coupling
eliminates overbinding
agostic interactions
transition metal geometries
transition metal complex spin preferences
naphthalene cation geometry
O3 frequencies
popular, well tested/validated
Cons:
bonds slightly long
no dynamic correlation: dispersion interactions
transition state for: F + H2
harder to converge for transition metals
scales as n^4
Accy:
ΔHf°±3 , ΔHr±4, ΔHdiss±5, ΔHatom±3, ΔH±4
D±0.2, IP±0.1
l±0.007, a±0.9
v+4.0%
B3P86 -
Basis:
B3 hybrid exchange w/ P86 correlation
Accy: v+4.6%
- Standard (uncorrelated) HF
Basis:
Hartree-Fock
Self Consistent Field
single Slater determinant/e- configuration
Pros:
isodesmic energies
relative activation enthalpies
Cons:
homolysis & atomization enthalpies low
ΔHs high w/o correlation
acrolein isomers
naphthalene cation symmetry
O3, F-O-O-F
radical hyperfine coupling too high x2
organic bonds short
M - π bonds long
favors metal s over d
wrong N2 orbitals order
overstablizes hi spin states of metal complexes
no e- correlation:
no static correlation: singlet methylene
no dynamic correlation: dispersion energy (π - π stacking) low
scales as n^2.7
MP2 - 2nd Order Moller Plesset ( = Many Body Perturbation Theory)
Basis:
Rayleigh-Schrodinger perturbation theory
Taylor Series expansion, truncated at 2nd order
Pros:
size consistent
dynamic correlation for dispersion forces:
CH4 - CH4 binding
π - π stacking interaction
bond breaking
anomeric effect
Cons:
not variational
transition metals
overbinds CO2, PO
free radicals too stable
O3 frequencies
bonds long
greater BSSE
diverges for e- gas
diffuse orbitals, extended system
scales as n^5
Acc'y:
ΔHf°±3, ΔHr±4, ΔHdiss±7, ΔHatom-22, ΔH±11
l+0.01, a±1
v+6.0% w/ 6-31G*, +6.7% w/ 6-31G**, +5.3% w/ 6-311G**
MP4 - 4th order Moller-Plesset
Cons: scales as n^7
- CCD - Coupled Cluster, doubles
Basis: double excitations "coupled" to reference configuration
Pros:
includes correlation
complete to ° order for double excitations
CCSD - Coupled Cluster, singles, doubles
Basis: single & double excitations "coupled" to reference configuration
Pros:
includes correlation
complete to ° order for single and double excitations
includes most quadruple & hextuple excitation effects
scales as n^6
CCSD(T) - Coupled Cluster, singles, doubles with approximate triples
Basis:
single & double excitations "coupled" to reference configuration
triples contributions perturbatively
Pros:
includes correlation
size consistent
popular for high level method
less spin contamination
transition metals
O3 frequencies
Cons:
overbinds CO2
not variational
greater BSSE
scales as n^5-7
CCSDT - Coupled Cluster, singles, doubles, & triples
Basis: single, double, & triple excitations "coupled" to reference configuration
Cons: scales as n^8
- CI - Configuration Interaction
Basis:
HF reference determinant/e- configuration
expand reference configuration into series of excited configurations
interaction with excited configurations used as many e- basis set
Pros:
dynamic correlation
more flexible wavefunctions
Cons: truncated forms not size consistent
Basis:
CI w/ single excitation configurations only
HF reference determinant
Pros: electronic spectra
Cons:
no e- correlation
not size consistent
excited state properties
potential energy surfaces
CID -
Basis:
CI w/ double excitation configurations only
HF reference determinant
Cons: not size consistent
= SDCI -
Basis:
CI w/ single and double excitation configurations
HF reference determinant
Pros:
includes correlation
single & double excitations
variational
Cons:
not size consistent
scales as n^6
QCISD(T) - Quadratic Configuration Interaction, singles, doubles, approximate triples
Basis:
CI w/ single and double excitation configurations
HF reference determinant
terms added to CI to make size consistent
Pros: size consistent
Cons: scales as n^7
Acc'y:
l+0.01, a±1
v+5%
MRCI - Multi-Reference Configuration Interaction
Basis:
more than 1 reference determinant/e- configuration
interaction w/ excited configurations used as many e- basis set
Pros:
a multireference method
biradicals
Cons: scales as n^8
Basis:
more than 1 reference determinant/e- configurations
CI w/ single & double excited configurations
Pros: a multireference method
Cons: not dissociation consistent
- MCSCF - Multi-Configuration SCF
Basis:
more than 1 reference determinant/e- configurations
both, configuration and orbital, coefficients optimized
a limited type of CI
Pros: a multireference method
- CASSCF - Complete Active Space SCF
Basis:
full CI "in active space"
select # of e- and orbitals
Pros:
includes correlation
a multireference method
Cons: selection of active space
- GVB - Generalized Valence Bond
Basis:
limited type of MCSCF/a multireference method
use excitations w/i e- pairs
Pros: dissociation consistent
- GVB-PP - GVB, Perfect Pairs
Basis:
GVB
CI restricted to doubles
GVB-RCI - GVB Restricted Configuration Interaction
Basis:
GVB
CI w/ singles and doubles
QMC - Quantum Monte Carlo
Basis:
correlated basis functions
evaluate integrals numerically numerical via Monte Carlo
Pros:
includes correlation
most accurate
Cons: long calculation
-
Basis:
minimal basis set
Slater type orbitals
3 Gaussian to fit exponential
Pros: Pauling point
Atoms:
H, He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
Accy:
ΔHdiss±3, ΔH±5
D±0.5
l±0.09, a±5, d±8
STO-3G* -
Basis:
STO-3G
set of polarizing d-functions (5D) added to heavy atoms
Atoms:
Na - Ar
K - Kr
Rb - Xe
Accy:
Basis:
Pople style (Gaussian Type Orbital) basis set
Valence Double Zeta:
3 Gaussians function primitives for each core basis functions
Split Valence:
2 Gaussians with linked coefficients for each inner valence e-
1 "uncontracted" (variable) primitive for each outer valence e-
Pros: Gaussians reduce 4-body mathematical problem to 2-body problem
Cons:
cis vs trans acrolein
amine N too flat
M-O short
adsorption energy high
Atoms:
H, He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
Accy:
ΔHf°±7, ΔHr±15, ΔHdiss-30, ΔH±4
D±0.4
l±0.06, a±3, d±20
v+10.9%
3-21G* = 3-21G(d) -
Basis:
3-21G
set of polarizing d-functions (6D) added to atoms past 1st row
Atoms:
Na - Ar
K - Kr
Rb - Xe
Accy:
Atoms:
Li - Ne
Na - Ar
K - Kr
Rb - Xe
3-21++G* -
Atoms:
H, He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
4-21G -
Atoms:
H, He
Li - Ne
4-21G* -
Basis:
4-21G
set of polarized d-functions (6D) added to heavy atoms
4-21G** -
4-31G -
Atoms:
H - He
Li - Ne
P - Cl
Accy: l±0.04
Basis:
4-31G
set of polarizing d-functions (6D) added to heavy atoms
4-31G** -
6-21G -
Atoms:
H - He
Li - Ne
Na - Ar
6-21G* -
6-21G** -
6-31G -
Basis:
Pople style (GTO) basis set
Valence Double Zeta:
6 Gaussian function primitives for each core basis function
Split-valence:
3 Gaussian primitives (linked coefficients) for each inner valence basis function
1 "uncontracted" (variable) primitive for each outer
Pros:
Gaussians reduce 4-body mathematical problem to 2-body problem
popular
Atoms:
H - He
Li - Ne
Na - Ar
6-31+G -
Pros:
negative ions
Rydberg states
less BSSE w/ diffuse (3rd) primitive Gaussian
Cons: convergence difficult w/ diffuse
- 6-31++G -
- 6-31G*
= 6-31G(d) -
Basis:
6-31G
set of polarizing d-functions (6D) added to heavy atoms
Pros:
anomeric effect
accuracy
most popular, widely used/validated
Atoms:
H, He
Li - Ne
Na - Ar
Accy:
ΔHf°±4, ΔHr±7, ΔHdiss-20, ΔHatom-120, ΔH±7
D±0.5
l±0.03, a±1
v+11.7%
6-31G** = 6-31G(d,p) -
Basis:
6-31G*
set of polarizing p-functions added to H, too
Pros: less BSSE w/ diffuse (3rd) primitive Gaussians
Cons: convergence w/ diffuse (3rd) primitive Gaussians
Accy: v+11.2%
- 6-31+G* = 6-31+G(d) - Augmented 6-31G*
Basis:
6-31G*
set of diffuse s- and diffuse p-functions added to heavy atoms
6-31++G* = 6-31++G(d) - Augmented 6-31+G*
Basis:
6-31+G*
set of diffuse s-functions added to H, too
6-31+G** = 6-31+G(d,p)-
6-31++G** = 6-31++G(d,p)-
6-311G -
Basis:
Pople style (GTO) basis set
Valence Triple Zeta:
6 Gaussian primitives for each core basis functions
Triple split valence:
3 primitives (linked coefficients) for each inner valence basis function
1 uncontracted primitive for 2nd layer of valence
1 uncontracted primitive for outer layer of valence
Cons: less flexible than real triple-zeta
Accy: v+10.5%
Basis:
6-311G
set of polarizing d-functions (5D) added to heavy atoms
Atoms:
H - He
Li - Ne
Na - Ar
6-311G** = 6-311G(d,p) -
Basis:
6-311G*
set of polarizing p-functions added to H, too
Accy: v+10.5%
- 6-311+G** -
- 6-311+G(3df,2p)
-
Basis:
6-311G
diffuse s- and p-functions added to heavy atoms
3 d- and 1 polarizing f-function added to heavy atoms
2 polarizing p-functions added to H
- Correlation Consistent, polarized Valence Double Zeta
Basis:
correlation consistent basis set
Valence Double Zeta
set of polarizing d-functions (5D) added to heavy atoms
Pros:
use with correlated methods
series converges exponentially to complete basis set limit
Atoms:
H-Ne
B-Ne
Al-Ar
cc-pVDZ+ - Augmented cc-pVDZ
Basis: add diffuse functions
Atoms:
H
C-F
Si-Cl
cc-pVDZ++ -
- Correlation Consistent Valence, polarized Triple Zeta
Basis:
correlation consistent basis set
Valence Triple Zeta
set of polarizing d-functions (5D) and f-functions added to heavy atoms
Pros: CH4 - CH4 binding
Atoms:
H-He
B-Ne
Al-Ar
cc-pVTZ+ -
Basis: add diffuse functions
Atoms:
H
C-F
Si-Cl
cc-pVTZ++ -
cc-pVQZ - Correlation Consistent, polarized Valence Quadruple Zeta
Basis:
correlation consistent basis set
Valence Quadruple Zeta
cc-pV5Z - Correlation Consistent, polarized Valence Quintuple Zeta
Basis:
correlation consistent basis set
Valence Quintuple Zeta
MIN -
Basis:
minimal basis set
numeric
Pros: DFT
Atoms: not limited to set
Basis:
Double Zeta
numeric basis set
exact numerical function from spherical atom
DND -
Basis:
Double Zeta
numeric basis set
set of polarizing functions (p- and d-) on heavy atoms
Pros: more accurate than 6-31G*
Atoms: not limited
- DNP - Double Numeric with Polarization
Basis:
Double Zeta
numeric basis set
set of polarizing functions (s-, p-, d-) on all atoms
Pros:
DFT
more accurate than 6-31G**
speed
Cons: sensitive to orientation
Atoms: not limited
Basis:
Double Zeta
contracted Gaussians, optimized for (local) DFT
Atoms:
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
DZ94P - Double Zeta with Polarization
Basis:
DZ94
polarization functions (1 angular momentum # higher than valence) added
Atoms:
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
DZV - Double Zeta Valence
Basis:
Dunning/Hay & Binning/Curtiss
Valence Double Zeta
Atoms:
H - He
Li - Ne
Al - Ar
Ga - Kr
DZVP - Double Zeta Valence with Polarization
Basis:
Valence Double Zeta
contracted Gaussians, optimized for (local) DFT
(~ 6-41G* ?)
polarization d-functions added to heavy atoms
Atoms:
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
DZVP2 -
Basis:
DZVP
polarization functions added to H, too
Atoms:
H - He
Li - Ne
Al -Ar
Sc - Zn
D95 -
Atoms:
H
Li - Ne
Al - Cl
D95* -
Basis:
D95
set of polarizing functions (6D) added to heavies
D95V -
Atoms:
H
Li - Ne
D95V* -
Basis:
D95V
set of polarizing functions (6D) added to heavies
TZ94 - Triple Zeta
Basis:
Triple Zeta
contracted Gaussians, optimized for (local) DFT
Atoms:
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
TZ94P - Triple Zeta with Polarization
Atoms:
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
TZV -
Basis:
Triple Zeta Valence
6-311G & McLean/Chandler
Gaussian primitives
Atoms:
Li - Ne
Na - Ar
K - Zn
TZVP - Triple Zeta Valence with Polarization
Basis:
Triple Zeta Valence
(~ 6-311G* ?)
optimized for (local) DFT
Atoms:
H - He
B - Ne
Al - Ar
LAV1S ( = LANL1MB ?) -
Basis:
Los Alamos (Hay-Wadt) Effective Core Potentials
Minimal basis set: Valence only
STO-3G for non ECP atoms
Atoms:
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV2D (= LANL1DZ ? LANL2DZ ?) -
Basis:
Los Alamos (Hay-Wadt) ECP's
Double Zeta: Valence only
D95V basis for non ECP's
Atoms:
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV2P -
Basis:
Los Alamos Effective Core Potentials
Double Zeta: Valence only
6-31G basis for non ECP's
Atoms:
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV3D -
Basis:
Los Alamos Effective Core Potentials
Triple Zeta: Valence only
D95 basis for non ECP's
Atoms:
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV3P -
Basis:
Los Alamos Effective Core Potentials
Triple Zeta: Valence only
pseudospectral
6-31G for non ECP's
Atoms:
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LACVD -
Basis:
Los Alamos Effective Core Potentials
Double Zeta: Valence and outermost core
D95 basis for non ECP's
Atoms:
K - Cu
Rb - Ag
Cs - La, Hf - Au
LACVP -
Basis:
Los Alamos Effective Core Potentials
Double Zeta: Valence and outermost core
6-31G basis for non ECP's
pseudospectral
Pros:
correlated wavefunctions
charge transfer effects
3rd row & higher elements
d(0) metals
Atoms:
K - Cu
Rb - Ag
Cs - La, Hf - Au
LACV3P -
Basis:
Los Alamos Effective Core Potentials
Triple Zeta: Valence & outermost core
6-311G for non ECP's
pseudospectral
Pros:
atomic state splittings
correlated wavefunctions
3rd row & higher elements
d(0) metals
charge transfer
Atoms:
K - Cu
Rb - Ag
Cs - La, Hf - Au
LACV3P++ -
Basis:
LACV3P
diffuse added to all atoms, including H & He
Pros:
low spin M(0), late 1st row transition metal complexes
anions
CEP = SBK - Stevens-Bash-Krauss-Jasien-Cundari
Basis:
Effective Core Potentials
Double Zeta: valence only
-31G splits
Atoms:
Li - Ne
Na - Ar
K - Kr
Rb - Xe
Cs - Rn
CEP-4 -
CEP-31 -
CEP-121 -
HW - Hay - Wadt ECP's
Basis:
Double Zeta: valence only
-21 splits
Atoms:
Na - Ar
K - Kr
Rb - Xe
MSV -
Atoms:
H - He
Li - Ne
Na - Ar
K - Ru, Pd - Xe
MSV* -
Basis:
MSV
set of polarizing d-functions (5D) added
(Grain of Salt)
The information above has been collected from various published results,
documentation, and personal experience.
This list is updated as information comes to my
attention and as time allows, but as rapidly as methods evolve, some info is no
doubt out of date and/or incomplete. (Accuracies are averages of typical
literature comparisons, for instance, which, of course, is dependent on the systems included in the published study.)
Consequently,
this compilation is meant more as an aid to help remember the strengths and limitations of each method,
rather than as a complete and authoritative reference.
Back to Modeling Reference Page
Link to
6/11/00 Ernie Chamot / Chamot Labs / (630) 637-1559 / echamot@chamotlabs.com
|