allen-tildesley-book
|
README,
f.00,
f.01,
f.02,
f.03,
f.04,
f.05,
f.06,
f.07,
f.08,
f.09,
f.10,
f.11,
f.12,
f.13,
f.14,
f.15,
f.16,
f.17,
f.18,
f.19,
f.20,
f.21,
f.22,
f.23,
f.24,
f.25,
f.26,
f.27,
f.28,
f.29,
f.30,
f.31,
f.32,
f.33,
f.34,
f.35,
f.36,
f.37,
older-version
|
|
|
********************************************************************************
** FICHE F.7. CONSTRAINT DYNAMICS FOR A NONLINEAR TRIATOMIC MOLECULE **
** This FORTRAN code is intended to illustrate points made in the text. **
** To our knowledge it works correctly. However it is the responsibility of **
** the user to test it, if it is to be used in a research application. **
********************************************************************************
C *******************************************************************
C ** TWO SEPARATE PARTS: NONRIGID AND RIGID TRIATOMIC MOLECULES. **
C *******************************************************************
C *******************************************************************
C ** FICHE F.7 - PART A **
C ** CONSTRAINT DYNAMICS FOR A NONRIGID TRIATOMIC MOLECULE. **
C *******************************************************************
SUBROUTINE MOVE ( DT, TOL, MAXIT, BOX, K, WC )
COMMON / BLOCK1 / RX, RY, RZ, OX, OY, OZ, FX, FY, FZ
COMMON / BLOCK2 / DSQ, M
C *******************************************************************
C ** UPDATES ATOMIC POSITIONS WITH BOND CONSTRAINTS APPLIED. **
C ** **
C ** THIS ROUTINE USES THE VERLET ALGORITHM AND APPLIES BOND **
C ** LENGTH CONSTRAINTS TO TWO BOND LENGTHS ONLY, 1-2 AND 2-3. **
C ** WE SOLVE A SYSTEM OF QUADRATIC EQUATIONS ITERATIVELY, USING **
C ** MATRIX INVERSION TO SOLVE ASSOCIATED LINEAR EQUATIONS, **
C ** AND ITERATING TO CONVERGENCE. **
C ** **
C ** REFERENCE: **
C ** **
C ** RYCKAERT ET AL., J. COMP. PHYS, 23, 327, 1977. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF MOLECULES **
C ** INTEGER NA ATOMS PER MOL. (3 HERE) **
C ** REAL DT TIMESTEP **
C ** INTEGER MAXIT MAX NUMBER OF ITERATIONS **
C ** REAL TOL PRESCRIBED TOLERANCE **
C ** REAL BOX BOX LENGTH **
C ** REAL K KINETIC ENERGY **
C ** REAL WC CONSTRAINT VIRIAL **
C ** REAL RX(N,NA),RY(N,NA),RZ(N,NA) ATOMIC POSITIONS AT TIME T **
C ** REAL OX(N,NA),OY(N,NA),OZ(N,NA) OLD POSITIONS AT TIME T-DT **
C ** REAL FX(N,NA),FY(N,NA),FZ(N,NA) ATOMIC FORCES AT TIME T **
C ** REAL M(NA) ATOMIC MASSES. **
C ** REAL DSQ(NA) SQUARED BOND LENGTHS **
C ** DSQ(A) IS THE SQUARED BOND LENGTH BETWEEN ATOMS A AND A+1. **
C ** **
C ** USAGE: **
C ** **
C ** THE ROUTINE SHOULD BE CALLED AFTER COMPUTING FORCES. **
C ** IT RETURNS THE NEW POSITIONS (TIME T+DT) IN RX,RY,RZ, AND THE **
C ** CURRENT (TIME T) POSITIONS IN OX,OY,OZ. **
C ** IT ALSO COMPUTES THE KINETIC ENERGY K AND THE CONSTRAINT **
C ** CONTRIBUTION TO THE ATOMIC VIRIAL WC. **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
INTEGER NA
PARAMETER ( NA = 3 )
INTEGER MAXIT
REAL TOL, DT, K, WC, BOX
REAL RX(N,NA), RY(N,NA), RZ(N,NA)
REAL OX(N,NA), OY(N,NA), OZ(N,NA)
REAL FX(N,NA), FY(N,NA), FZ(N,NA)
REAL M(NA), DSQ(NA)
INTEGER I, IT
REAL RX1, RY1, RZ1, RX2, RY2, RZ2, RX3, RY3, RZ3
REAL PX1, PY1, PZ1, PX2, PY2, PZ2, PX3, PY3, PZ3
REAL RX12, RY12, RZ12, RX23, RY23, RZ23
REAL PX12, PY12, PZ12, PX23, PY23, PZ23
REAL VXIA, VYIA, VZIA, OM1, OM2, OM3, DTSQ
REAL R12SQ, R23SQ, R12R23
REAL P12SQ, P23SQ
REAL P12R12, P12R23, P23R12, P23R23
REAL L12, L23, L12NEW, L23NEW
REAL MAT11, MAT12, MAT21, MAT22
REAL INV11, INV12, INV21, INV22
REAL CONST1, CONST2, QUAD1, QUAD2, VEC1, VEC2
REAL Q111, Q122, Q112, Q211, Q222, Q212
REAL DETERM, LTOL, BOXINV
LOGICAL DONE
C *******************************************************************
BOXINV = 1.0 / BOX
DTSQ = DT ** 2
LTOL = TOL * DTSQ
R12SQ = DSQ(1)
R23SQ = DSQ(2)
OM1 = 1.0 / M(1)
OM2 = 1.0 / M(2)
OM3 = 1.0 / M(3)
K = 0.0
WC = 0.0
C ** LOOP OVER MOLECULES **
DO 2000 I = 1, N
C ** VERLET ALGORITHM **
RX1 = RX(I,1)
RY1 = RY(I,1)
RZ1 = RZ(I,1)
PX1 = 2.0 * RX1 - OX(I,1) + DTSQ * FX(I,1) * OM1
PY1 = 2.0 * RY1 - OY(I,1) + DTSQ * FY(I,1) * OM1
PZ1 = 2.0 * RZ1 - OZ(I,1) + DTSQ * FZ(I,1) * OM1
RX2 = RX(I,2)
RY2 = RY(I,2)
RZ2 = RZ(I,2)
PX2 = 2.0 * RX2 - OX(I,2) + DTSQ * FX(I,2) * OM2
PY2 = 2.0 * RY2 - OY(I,2) + DTSQ * FY(I,2) * OM2
PZ2 = 2.0 * RZ2 - OZ(I,2) + DTSQ * FZ(I,2) * OM2
RX3 = RX(I,3)
RY3 = RY(I,3)
RZ3 = RZ(I,3)
PX3 = 2.0 * RX3 - OX(I,3) + DTSQ * FX(I,3) * OM3
PY3 = 2.0 * RY3 - OY(I,3) + DTSQ * FY(I,3) * OM3
PZ3 = 2.0 * RZ3 - OZ(I,3) + DTSQ * FZ(I,3) * OM3
C ** CALCULATE RELATIVE VECTORS **
RX12 = RX1 - RX2
RX12 = RX12 - ANINT ( RX12 * BOXINV ) * BOX
RY12 = RY1 - RY2
RY12 = RY12 - ANINT ( RY12 * BOXINV ) * BOX
RZ12 = RZ1 - RZ2
RZ12 = RZ12 - ANINT ( RZ12 * BOXINV ) * BOX
RX23 = RX2 - RX3
RX23 = RX23 - ANINT ( RX23 * BOXINV ) * BOX
RY23 = RY2 - RY3
RY23 = RY23 - ANINT ( RY23 * BOXINV ) * BOX
RZ23 = RZ2 - RZ3
RZ23 = RZ23 - ANINT ( RZ23 * BOXINV ) * BOX
PX12 = PX1 - PX2
PX12 = PX12 - ANINT ( PX12 * BOXINV ) * BOX
PY12 = PY1 - PY2
PY12 = PY12 - ANINT ( PY12 * BOXINV ) * BOX
PZ12 = PZ1 - PZ2
PZ12 = PZ12 - ANINT ( PZ12 * BOXINV ) * BOX
PX23 = PX2 - PX3
PX23 = PX23 - ANINT ( PX23 * BOXINV ) * BOX
PY23 = PY2 - PY3
PY23 = PY23 - ANINT ( PY23 * BOXINV ) * BOX
PZ23 = PZ2 - PZ3
PZ23 = PZ23 - ANINT ( PZ23 * BOXINV ) * BOX
C ** CALCULATE SCALAR PRODUCTS **
R12R23 = RX12 * RX23 + RY12 * RY23 + RZ12 * RZ23
P12SQ = PX12 ** 2 + PY12 ** 2 + PZ12 ** 2
P23SQ = PX23 ** 2 + PY23 ** 2 + PZ23 ** 2
P12R12 = PX12 * RX12 + PY12 * RY12 + PZ12 * RZ12
P12R23 = PX12 * RX23 + PY12 * RY23 + PZ12 * RZ23
P23R12 = PX23 * RX12 + PY23 * RY12 + PZ23 * RZ12
P23R23 = PX23 * RX23 + PY23 * RY23 + PZ23 * RZ23
CONST1 = R12SQ - P12SQ
CONST2 = R23SQ - P23SQ
C ** EVALUATE MATRIX ELEMENTS AND QUADRATIC COEFFICIENTS **
MAT11 = 2.0 * P12R12 * ( OM1 + OM2 )
MAT12 = - 2.0 * P12R23 * OM2
MAT21 = - 2.0 * P23R12 * OM2
MAT22 = 2.0 * P23R23 * ( OM2 + OM3 )
Q111 = - R12SQ * ( OM1 + OM2 ) ** 2
Q122 = - R23SQ * OM2 ** 2
Q112 = + 2.0 * R12R23 * ( OM1 + OM2 ) * OM2
Q211 = - R12SQ * OM2 ** 2
Q222 = - R23SQ * ( OM2 + OM3 ) ** 2
Q212 = + 2.0 * R12R23 * ( OM2 + OM3 ) * OM2
C ** INVERT MATRIX **
DETERM = 1.0 / ( MAT11 * MAT22 - MAT21 * MAT12 )
INV11 = MAT22 * DETERM
INV12 = -MAT12 * DETERM
INV21 = -MAT21 * DETERM
INV22 = MAT11 * DETERM
C ** PREPARE FOR ITERATIVE LOOP **
L12 = 0.0
L23 = 0.0
DONE = .FALSE.
IT = 0
C ** BEGIN ITERATIVE LOOP **
1000 IF ( ( .NOT. DONE ) .AND. ( IT .LE. MAXIT ) ) THEN
QUAD1 = Q111 * L12 ** 2
: + Q122 * L23 ** 2
: + Q112 * L12 * L23
QUAD2 = Q211 * L12 ** 2
: + Q222 * L23 ** 2
: + Q212 * L12 * L23
VEC1 = CONST1 + QUAD1
VEC2 = CONST2 + QUAD2
L12NEW = INV11 * VEC1 + INV12 * VEC2
L23NEW = INV21 * VEC1 + INV22 * VEC2
DONE = ( ( ABS ( L12NEW - L12 ) .LE. LTOL ) .AND.
: ( ABS ( L23NEW - L23 ) .LE. LTOL ) )
L12 = L12NEW
L23 = L23NEW
IT = IT + 1
GOTO 1000
ENDIF
C ** END OF ITERATION **
PX1 = PX1 + OM1 * ( L12 * RX12 )
PY1 = PY1 + OM1 * ( L12 * RY12 )
PZ1 = PZ1 + OM1 * ( L12 * RZ12 )
PX2 = PX2 + OM2 * ( L23 * RX23 - L12 * RX12 )
PY2 = PY2 + OM2 * ( L23 * RY23 - L12 * RY12 )
PZ2 = PZ2 + OM2 * ( L23 * RZ23 - L12 * RZ12 )
PX3 = PX3 + OM3 * ( - L23 * RX23 )
PY3 = PY3 + OM3 * ( - L23 * RY23 )
PZ3 = PZ3 + OM3 * ( - L23 * RZ23 )
IF ( .NOT. DONE ) THEN
WRITE(*,'('' TOO MANY CONSTRAINT ITERATIONS '')')
WRITE(*,'('' MOLECULE '',I5)') I
STOP
ENDIF
C ** CALCULATE KINETIC ENERGY CONTRIBUTION **
VXIA = 0.5 * ( PX1 - OX(I,1) ) / DT
VYIA = 0.5 * ( PY1 - OY(I,1) ) / DT
VZIA = 0.5 * ( PZ1 - OZ(I,1) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(1)
VXIA = 0.5 * ( PX2 - OX(I,2) ) / DT
VYIA = 0.5 * ( PY2 - OY(I,2) ) / DT
VZIA = 0.5 * ( PZ2 - OZ(I,2) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(2)
VXIA = 0.5 * ( PX3 - OX(I,3) ) / DT
VYIA = 0.5 * ( PY3 - OY(I,3) ) / DT
VZIA = 0.5 * ( PZ3 - OZ(I,3) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(3)
C ** CALCULATE CONSTRAINT VIRIAL CONTRIBUTION **
WC = WC + L12 * R12SQ + L23 * R23SQ
C ** STORE AWAY POSITIONS **
OX(I,1) = RX1
OY(I,1) = RY1
OZ(I,1) = RZ1
OX(I,2) = RX2
OY(I,2) = RY2
OZ(I,2) = RZ2
OX(I,3) = RX3
OY(I,3) = RY3
OZ(I,3) = RZ3
RX(I,1) = PX1
RY(I,1) = PY1
RZ(I,1) = PZ1
RX(I,2) = PX2
RY(I,2) = PY2
RZ(I,2) = PZ2
RX(I,3) = PX3
RY(I,3) = PY3
RZ(I,3) = PZ3
2000 CONTINUE
C ** END OF LOOP OVER MOLECULES **
K = 0.5 * K
WC = WC / DTSQ / 3.0
RETURN
END
C *******************************************************************
C ** FICHE F.7 - PART B **
C ** CONSTRAINT DYNAMICS FOR A RIGID NONLINEAR TRIATOMIC MOLECULE. **
C *******************************************************************
SUBROUTINE MOVE ( DT, TOL, MAXIT, BOX, K, WC )
COMMON / BLOCK1 / RX, RY, RZ, OX, OY, OZ, FX, FY, FZ
COMMON / BLOCK2 / DSQ, M
C *******************************************************************
C ** UPDATES ATOMIC POSITIONS WITH BOND CONSTRAINTS APPLIED. **
C ** **
C ** THIS ROUTINE USES THE VERLET ALGORITHM AND APPLIES BOND **
C ** LENGTH CONSTRAINTS TO ALL THREE BONDS, NAMELY 1-2, 2-3, 3-1. **
C ** WE SOLVE A SYSTEM OF QUADRATIC EQUATIONS ITERATIVELY, USING **
C ** MATRIX INVERSION TO SOLVE ASSOCIATED LINEAR EQUATIONS, **
C ** AND ITERATING TO CONVERGENCE. **
C ** **
C ** REFERENCE: **
C ** **
C ** RYCKAERT ET AL., J. COMP. PHYS, 23, 327, 1977. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF MOLECULES **
C ** INTEGER NA ATOMS PER MOL. (3 HERE) **
C ** REAL DT TIMESTEP **
C ** INTEGER MAXIT MAX NUMBER OF ITERATIONS **
C ** REAL BOX BOX LENGTH **
C ** REAL TOL PRESCRIBED TOLERANCE **
C ** REAL K KINETIC ENERGY **
C ** REAL WC CONSTRAINT VIRIAL **
C ** REAL RX(N,NA),RY(N,NA),RZ(N,NA) ATOMIC POSITIONS AT TIME T **
C ** REAL OX(N,NA),OY(N,NA),OZ(N,NA) OLD POSITIONS AT TIME T-DT **
C ** REAL FX(N,NA),FY(N,NA),FZ(N,NA) ATOMIC FORCES AT TIME T **
C ** REAL M(NA) ATOMIC MASSES. **
C ** REAL DSQ(NA) SQUARED BOND LENGTHS **
C ** DSQ(A) IS THE SQUARED BOND LENGTH BETWEEN ATOMS A AND A+1. **
C ** **
C ** USAGE: **
C ** **
C ** THE ROUTINE SHOULD BE CALLED AFTER COMPUTING FORCES. **
C ** IT RETURNS THE NEW POSITIONS (TIME T+DT) IN RX,RY,RZ, AND THE **
C ** CURRENT (TIME T) POSITIONS IN OX,OY,OZ. **
C ** IT ALSO COMPUTES THE KINETIC ENERGY K AND THE CONSTRAINT **
C ** CONTRIBUTION TO THE VIRIAL WC. **
C *******************************************************************
INTEGER N
PARAMETER ( N = 108 )
INTEGER NA
PARAMETER ( NA = 3 )
INTEGER MAXIT
REAL TOL, DT, K, WC, BOX
REAL RX(N,NA), RY(N,NA), RZ(N,NA)
REAL OX(N,NA), OY(N,NA), OZ(N,NA)
REAL FX(N,NA), FY(N,NA), FZ(N,NA)
REAL M(NA), DSQ(NA)
INTEGER IT, I
REAL RX1, RY1, RZ1, RX2, RY2, RZ2, RX3, RY3, RZ3
REAL PX1, PY1, PZ1, PX2, PY2, PZ2, PX3, PY3, PZ3
REAL RX12, RY12, RZ12, RX23, RY23, RZ23, RX31, RY31, RZ31
REAL PX12, PY12, PZ12, PX23, PY23, PZ23, PX31, PY31, PZ31
REAL VXIA, VYIA, VZIA, OM1, OM2, OM3, DTSQ
REAL R12SQ, R23SQ, R31SQ, R12R23, R23R31, R31R12
REAL P12SQ, P23SQ, P31SQ
REAL P12R12, P12R23, P12R31
REAL P23R12, P23R23, P23R31
REAL P31R12, P31R23, P31R31
REAL L12, L23, L31, L12NEW, L23NEW, L31NEW, LTOL, BOXINV
REAL CONST1, CONST2, CONST3
REAL QUAD1, QUAD2, QUAD3, VEC1, VEC2, VEC3
REAL Q111, Q122, Q133, Q112, Q123, Q131
REAL Q211, Q222, Q233, Q212, Q223, Q231
REAL Q311, Q322, Q333, Q312, Q323, Q331
REAL MAT(3,3), INV(3,3)
LOGICAL DONE
C *******************************************************************
BOXINV = 1.0 / BOX
DTSQ = DT ** 2
LTOL = TOL * DTSQ
R12SQ = DSQ(1)
R23SQ = DSQ(2)
R31SQ = DSQ(3)
OM1 = 1.0 / M(1)
OM2 = 1.0 / M(2)
OM3 = 1.0 / M(3)
K = 0.0
WC = 0.0
C ** LOOP OVER MOLECULES **
DO 2000 I = 1, N
C ** VERLET ALGORITHM **
RX1 = RX(I,1)
RY1 = RY(I,1)
RZ1 = RZ(I,1)
PX1 = 2.0 * RX1 - OX(I,1) + DTSQ * FX(I,1) * OM1
PY1 = 2.0 * RY1 - OY(I,1) + DTSQ * FY(I,1) * OM1
PZ1 = 2.0 * RZ1 - OZ(I,1) + DTSQ * FZ(I,1) * OM1
RX2 = RX(I,2)
RY2 = RY(I,2)
RZ2 = RZ(I,2)
PX2 = 2.0 * RX2 - OX(I,2) + DTSQ * FX(I,2) * OM2
PY2 = 2.0 * RY2 - OY(I,2) + DTSQ * FY(I,2) * OM2
PZ2 = 2.0 * RZ2 - OZ(I,2) + DTSQ * FZ(I,2) * OM2
RX3 = RX(I,3)
RY3 = RY(I,3)
RZ3 = RZ(I,3)
PX3 = 2.0 * RX3 - OX(I,3) + DTSQ * FX(I,3) * OM3
PY3 = 2.0 * RY3 - OY(I,3) + DTSQ * FY(I,3) * OM3
PZ3 = 2.0 * RZ3 - OZ(I,3) + DTSQ * FZ(I,3) * OM3
C ** CALCULATE RELATIVE VECTORS **
RX12 = RX1 - RX2
RX12 = RX12 - ANINT ( RX12 * BOXINV ) * BOX
RY12 = RY1 - RY2
RY12 = RY12 - ANINT ( RY12 * BOXINV ) * BOX
RZ12 = RZ1 - RZ2
RZ12 = RZ12 - ANINT ( RZ12 * BOXINV ) * BOX
RX23 = RX2 - RX3
RX23 = RX23 - ANINT ( RX23 * BOXINV ) * BOX
RY23 = RY2 - RY3
RY23 = RY23 - ANINT ( RY23 * BOXINV ) * BOX
RZ23 = RZ2 - RZ3
RZ23 = RZ23 - ANINT ( RZ23 * BOXINV ) * BOX
RX31 = RX3 - RX1
RX31 = RX31 - ANINT ( RX31 * BOXINV ) * BOX
RY31 = RY3 - RY1
RY31 = RY31 - ANINT ( RY31 * BOXINV ) * BOX
RZ31 = RZ3 - RZ1
RZ31 = RZ31 - ANINT ( RZ31 * BOXINV ) * BOX
PX12 = PX1 - PX2
PX12 = PX12 - ANINT ( PX12 * BOXINV ) * BOX
PY12 = PY1 - PY2
PY12 = PY12 - ANINT ( PY12 * BOXINV ) * BOX
PZ12 = PZ1 - PZ2
PZ12 = PZ12 - ANINT ( PZ12 * BOXINV ) * BOX
PX23 = PX2 - PX3
PX23 = PX23 - ANINT ( PX23 * BOXINV ) * BOX
PY23 = PY2 - PY3
PY23 = PY23 - ANINT ( PY23 * BOXINV ) * BOX
PZ23 = PZ2 - PZ3
PZ23 = PZ23 - ANINT ( PZ23 * BOXINV ) * BOX
PX31 = PX3 - PX1
PX31 = PX31 - ANINT ( PX31 * BOXINV ) * BOX
PY31 = PY3 - PY1
PY31 = PY31 - ANINT ( PY31 * BOXINV ) * BOX
PZ31 = PZ3 - PZ1
PZ31 = PZ31 - ANINT ( PZ31 * BOXINV ) * BOX
C ** CALCULATE SCALAR PRODUCTS **
R12R23 = RX12 * RX23 + RY12 * RY23 + RZ12 * RZ23
R23R31 = RX23 * RX31 + RY23 * RY31 + RZ23 * RZ31
R31R12 = RX31 * RX12 + RY31 * RY12 + RZ31 * RZ12
P12SQ = PX12 ** 2 + PY12 ** 2 + PZ12 ** 2
P23SQ = PX23 ** 2 + PY23 ** 2 + PZ23 ** 2
P31SQ = PX31 ** 2 + PY31 ** 2 + PZ31 ** 2
P12R12 = PX12 * RX12 + PY12 * RY12 + PZ12 * RZ12
P12R23 = PX12 * RX23 + PY12 * RY23 + PZ12 * RZ23
P12R31 = PX12 * RX31 + PY12 * RY31 + PZ12 * RZ31
P23R12 = PX23 * RX12 + PY23 * RY12 + PZ23 * RZ12
P23R23 = PX23 * RX23 + PY23 * RY23 + PZ23 * RZ23
P23R31 = PX23 * RX31 + PY23 * RY31 + PZ23 * RZ31
P31R12 = PX31 * RX12 + PY31 * RY12 + PZ31 * RZ12
P31R23 = PX31 * RX23 + PY31 * RY23 + PZ31 * RZ23
P31R31 = PX31 * RX31 + PY31 * RY31 + PZ31 * RZ31
CONST1 = R12SQ - P12SQ
CONST2 = R23SQ - P23SQ
CONST3 = R31SQ - P31SQ
C ** CALCULATE MATRIX AND QUADRATIC COEFFICIENTS **
MAT(1,1) = 2.0 * ( OM1 + OM2 ) * P12R12
MAT(1,2) = -2.0 * OM2 * P12R23
MAT(1,3) = -2.0 * OM1 * P12R31
MAT(2,1) = -2.0 * OM2 * P23R12
MAT(2,2) = 2.0 * ( OM2 + OM3 ) * P23R23
MAT(2,3) = -2.0 * OM3 * P23R31
MAT(3,1) = -2.0 * OM1 * P31R12
MAT(3,2) = -2.0 * OM3 * P31R23
MAT(3,3) = 2.0 * ( OM1 + OM3 ) * P31R31
Q111 = - R12SQ * ( OM1 + OM2 ) ** 2
Q122 = - R23SQ * OM2 ** 2
Q133 = - R31SQ * OM1 ** 2
Q112 = + 2.0 * R12R23 * ( OM1 + OM2 ) * OM2
Q123 = - 2.0 * R23R31 * OM1 * OM2
Q131 = + 2.0 * R31R12 * ( OM1 + OM2 ) * OM1
Q211 = - R12SQ * OM2 ** 2
Q222 = - R23SQ * ( OM2 + OM3 ) ** 2
Q233 = - R31SQ * OM3 ** 2
Q212 = + 2.0 * R12R23 * ( OM2 + OM3 ) * OM2
Q223 = + 2.0 * R23R31 * ( OM2 + OM3 ) * OM3
Q231 = - 2.0 * R31R12 * OM2 * OM3
Q311 = - R12SQ * OM1 ** 2
Q322 = - R23SQ * OM3 ** 2
Q333 = - R31SQ * ( OM1 + OM3 ) ** 2
Q312 = - 2.0 * R12R23 * OM1 * OM3
Q323 = + 2.0 * R23R31 * ( OM1 + OM3 ) * OM3
Q331 = + 2.0 * R31R12 * ( OM1 + OM3 ) * OM1
C ** NOW CALL ROUTINE TO INVERT THE MATRIX MAT **
CALL MATINV ( MAT, INV )
C ** PREPARE FOR ITERATIVE LOOP **
DONE = .FALSE.
IT = 0
L12 = 0.0
L23 = 0.0
L31 = 0.0
C ** BEGIN ITERATIVE LOOP **
1000 IF ( ( .NOT. DONE ) .AND. ( IT .LE. MAXIT ) ) THEN
QUAD1 = Q111 * L12 ** 2 + Q112 * L12 * L23
: + Q122 * L23 ** 2 + Q123 * L23 * L31
: + Q133 * L31 ** 2 + Q131 * L31 * L12
QUAD2 = Q211 * L12 ** 2 + Q212 * L12 * L23
: + Q222 * L23 ** 2 + Q223 * L23 * L31
: + Q233 * L31 ** 2 + Q231 * L31 * L12
QUAD3 = Q311 * L12 ** 2 + Q312 * L12 * L23
: + Q322 * L23 ** 2 + Q323 * L23 * L31
: + Q333 * L31 ** 2 + Q331 * L31 * L12
VEC1 = CONST1 + QUAD1
VEC2 = CONST2 + QUAD2
VEC3 = CONST3 + QUAD3
C ** OBTAIN SOLUTIONS OF LINEARIZED EQUATION **
L12NEW = INV(1,1) * VEC1 + INV(1,2) * VEC2
: + INV(1,3) * VEC3
L23NEW = INV(2,1) * VEC1 + INV(2,2) * VEC2
: + INV(2,3) * VEC3
L31NEW = INV(3,1) * VEC1 + INV(3,2) * VEC2
: + INV(3,3) * VEC3
DONE = ( ( ABS ( L12NEW - L12 ) .LE. LTOL ) .AND.
: ( ABS ( L23NEW - L23 ) .LE. LTOL ) .AND.
: ( ABS ( L31NEW - L31 ) .LE. LTOL ) )
L12 = L12NEW
L23 = L23NEW
L31 = L31NEW
IT = IT + 1
GOTO 1000
ENDIF
C ** END OF ITERATION **
PX1 = PX1 + OM1 * ( L12 * RX12 - L31 * RX31 )
PY1 = PY1 + OM1 * ( L12 * RY12 - L31 * RY31 )
PZ1 = PZ1 + OM1 * ( L12 * RZ12 - L31 * RZ31 )
PX2 = PX2 + OM2 * ( L23 * RX23 - L12 * RX12 )
PY2 = PY2 + OM2 * ( L23 * RY23 - L12 * RY12 )
PZ2 = PZ2 + OM2 * ( L23 * RZ23 - L12 * RZ12 )
PX3 = PX3 + OM3 * ( L31 * RX31 - L23 * RX23 )
PY3 = PY3 + OM3 * ( L31 * RY31 - L23 * RY23 )
PZ3 = PZ3 + OM3 * ( L31 * RZ31 - L23 * RZ23 )
IF ( .NOT. DONE ) THEN
WRITE(*,'('' TOO MANY CONSTRAINT ITERATIONS '')')
WRITE(*,'('' MOLECULE '',I5)') I
STOP
ENDIF
C ** CALCULATE KINETIC ENERGY CONTRIBUTION **
VXIA = 0.5 * ( PX1 - OX(I,1) ) / DT
VYIA = 0.5 * ( PY1 - OY(I,1) ) / DT
VZIA = 0.5 * ( PZ1 - OZ(I,1) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(1)
VXIA = 0.5 * ( PX2 - OX(I,2) ) / DT
VYIA = 0.5 * ( PY2 - OY(I,2) ) / DT
VZIA = 0.5 * ( PZ2 - OZ(I,2) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(2)
VXIA = 0.5 * ( PX3 - OX(I,3) ) / DT
VYIA = 0.5 * ( PY3 - OY(I,3) ) / DT
VZIA = 0.5 * ( PZ3 - OZ(I,3) ) / DT
K = K + ( VXIA ** 2 + VYIA ** 2 + VZIA ** 2 ) * M(3)
C ** CALCULATE CONSTRAINT VIRIAL CONTRIBUTION **
WC = WC + L12 * R12SQ + L23 * R23SQ + L31 * R31SQ
C ** STORE RESULTS **
OX(I,1) = RX1
OY(I,1) = RY1
OZ(I,1) = RZ1
RX(I,1) = PX1
RY(I,1) = PY1
RZ(I,1) = PZ1
OX(I,2) = RX2
OY(I,2) = RY2
OZ(I,2) = RZ2
RX(I,2) = PX2
RY(I,2) = PY2
RZ(I,2) = PZ2
OX(I,3) = RX3
OY(I,3) = RY3
OZ(I,3) = RZ3
RX(I,3) = PX3
RY(I,3) = PY3
RZ(I,3) = PZ3
2000 CONTINUE
C ** END OF LOOP OVER MOLECULES **
K = 0.5 * K
WC = WC / DTSQ / 3.0
RETURN
END
SUBROUTINE MATINV ( MAT, INV )
C *******************************************************************
C ** A SIMPLE ROUTINE TO INVERT THE 3X3 MATRIX MAT AND RETURN INV **
C *******************************************************************
REAL MAT(3,3), INV(3,3), DETERM
REAL TOL
PARAMETER ( TOL = 1.E-7 )
C *******************************************************************
C ** GET ALL SIGNED COFACTORS, TRANSPOSE, AND PUT IN INV **
INV(1,1) = MAT(2,2) * MAT(3,3) - MAT(2,3) * MAT(3,2)
INV(2,1) = MAT(3,1) * MAT(2,3) - MAT(3,3) * MAT(2,1)
INV(3,1) = MAT(2,1) * MAT(3,2) - MAT(2,2) * MAT(3,1)
INV(1,2) = MAT(3,2) * MAT(1,3) - MAT(3,3) * MAT(1,2)
INV(2,2) = MAT(1,1) * MAT(3,3) - MAT(1,3) * MAT(3,1)
INV(3,2) = MAT(3,1) * MAT(1,2) - MAT(3,2) * MAT(1,1)
INV(1,3) = MAT(1,2) * MAT(2,3) - MAT(1,3) * MAT(2,2)
INV(2,3) = MAT(2,1) * MAT(1,3) - MAT(2,3) * MAT(1,1)
INV(3,3) = MAT(1,1) * MAT(2,2) - MAT(1,2) * MAT(2,1)
C ** GET DETERMINANT AND GUARD AGAINST ZERO **
DETERM = MAT(1,1) * INV(1,1) + MAT(1,2) * INV(2,1)
: + MAT(1,3) * INV(3,1)
IF ( ABS ( DETERM ) .LT. TOL ) STOP 'ZERO DETERM IN MATINV'
INV(1,1) = INV(1,1) / DETERM
INV(1,2) = INV(1,2) / DETERM
INV(1,3) = INV(1,3) / DETERM
INV(2,1) = INV(2,1) / DETERM
INV(2,2) = INV(2,2) / DETERM
INV(2,3) = INV(2,3) / DETERM
INV(3,1) = INV(3,1) / DETERM
INV(3,2) = INV(3,2) / DETERM
INV(3,3) = INV(3,3) / DETERM
RETURN
END
|